Blood-Oxygen-Level-Dependent Parameter Identification using Multimodal Neuroimaging and Particle Filters

dc.contributor.authorMundle, Aditya Rameshen
dc.contributor.committeechairWyatt, Christopher L.en
dc.contributor.committeememberBaumann, William T.en
dc.contributor.committeememberBeex, A. A. Louisen
dc.contributor.departmentElectrical and Computer Engineeringen
dc.date.accessioned2014-03-14T20:31:14Zen
dc.date.adate2012-03-06en
dc.date.available2014-03-14T20:31:14Zen
dc.date.issued2012-01-19en
dc.date.rdate2012-03-06en
dc.date.sdate2012-01-31en
dc.description.abstractThe Blood Oxygen Level Dependent (BOLD) signal provides indirect estimates of neural activity. The parameters of this BOLD signal can give information about the pathophysiological state of the brain. Most of the models for the BOLD signal are overparameterized which makes the unique identification of these parameters difficult. In this work, we use information from multiple neu- roimaging sources to get better estimates of these parameters instead of relying on the information from the BOLD signal only. The mulitmodal neuroimaging setup consisted of the information from Cerebral Blood Volume (CBV) ( VASO-Fluid-Attenuation-Inversion-Recovery (VASO-FLAIR)), and Cerebral Blood Flow (CBF) (from Arterial Spin Labelling (ASL)) in addition to the BOLD signal and the fusion of this information is achieved in a Particle Filter (PF) framework. The trace plots and the correlation coefficients of the parameter estimates from the PF reflect ill-posedness of the BOLD model. The means of the parameter estimates are much closer to the ground truth compared to the estimates obtained using only the BOLD information. These parameter estimates were also found to be more robust to noise and influence of the prior.en
dc.description.degreeMaster of Scienceen
dc.identifier.otheretd-01312012-204254en
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-01312012-204254/en
dc.identifier.urihttp://hdl.handle.net/10919/31092en
dc.language.isoenen
dc.publisherVirginia Techen
dc.relation.haspartMundle_AR_T_2012.pdfen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectBOLD Responseen
dc.subjectNonlinear Systemsen
dc.subjectOverparameterizationen
dc.subjectSystem Identificationen
dc.subjectParticle Filteren
dc.subjectMultimodal Neuroimagingen
dc.titleBlood-Oxygen-Level-Dependent Parameter Identification using Multimodal Neuroimaging and Particle Filtersen
dc.typeThesisen
thesis.degree.disciplineElectrical and Computer Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Mundle_AR_T_2012.pdf
Size:
2.35 MB
Format:
Adobe Portable Document Format

Collections