Advanced Control Design of an Autonomous Line Painting Robot

dc.contributor.authorCao, Mincanen
dc.contributor.committeechairLeonessa, Alexanderen
dc.contributor.committeememberFurukawa, Tomonarien
dc.contributor.committeememberSteve, Southwarden
dc.contributor.departmentMechanical Engineeringen
dc.date.accessioned2017-06-14T19:25:09Zen
dc.date.available2017-06-14T19:25:09Zen
dc.date.issued2017-05-30en
dc.description.abstractPainting still plays a fundamental role in communication nowadays. For example, the paint on the road, called road surface marking, guides the traffic in order and maintains the high efficiency of the entire modern traffic system. With the development of the Autonomous Ground Vehicle (AGV), the idea of a line Painting Robot emerged. In this thesis, a Painting Robot was designed as a standalone system based on the AGV platform. In this study, the mechanical and electronic design of a Painting Robot was discussed. The overall design was to fulfill the requirements of the line painting. Computer vision techniques were applied to this thesis since the camera was selected as the major sensor of the robot. Advanced control theory was introduced to this thesis as well. Three different controllers were developed. The Proportional-Integral (PI) controller with an anti-windup feature was designed to overcome the drawbacks of the traditional PI controller. Model Reference Adaptive Control (MRAC) was introduced into this thesis to deal with the uncertainties of the system. At last, the hybrid PI-MRAC controller was implemented to maintain the advantages of both PI and MRAC approaches. Experiments were conducted to evaluate the performance of the entire system, which indicated the successful design of the Painting Robot.en
dc.description.abstractgeneralPainting still plays a fundamental role in communication nowadays. With the development of the Autonomous Ground Vehicle (AGV), the idea of a line Painting Robot emerged. In this thesis, a Painting Robot was designed as a standalone system based on the AGV platform. In this study, a Painting Robot with a two-camera system was designed. Computer vision techniques and advanced control theory were introduced into this thesis. Three different controllers were developed, including Proportional-Integral (PI) with an anti-windup feature, Model Reference Adaptive Control (MRAC) and the hybrid PI-MRAC. Experiments were conducted to evaluate the performance of the entire system, which indicated the successful design of the Painting Robot.en
dc.description.degreeMaster of Scienceen
dc.format.mediumETDen
dc.identifier.urihttp://hdl.handle.net/10919/78198en
dc.language.isoen_USen
dc.publisherVirginia Techen
dc.rightsCreative Commons Attribution-ShareAlike 3.0 United Statesen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/us/en
dc.subjectAdaptive Controlen
dc.subjectPainting Roboten
dc.subjectComputer Visionen
dc.titleAdvanced Control Design of an Autonomous Line Painting Roboten
dc.typeThesisen
thesis.degree.disciplineMechanical Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Cao_M_T_2017.pdf
Size:
3.37 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections