VTechWorks staff will be away for the Thanksgiving holiday beginning at noon on Wednesday, November 27, through Friday, November 29. We will resume normal operations on Monday, December 2. Thank you for your patience.
 

Spread of Red Imported Fire Ant, Solenopsis invicta, in Virginia and effects of sub-lethal exposure to agrochemicals on its behavior

TR Number

Date

2022-01-14

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Solenopsis invicta is an invasive ant that has caused detrimental impacts to ecosystems and economies in the Southeastern United States, recently including Virginia. In this study, we explored the invasion ecology of S. invicta through two main objectives. First, we established a comprehensive distribution map of S. invicta in Virginia through multiple survey techniques. We then compared our findings with published models quantifying the potential spread of S. invicta and created our own species distribution model. In 2020-2021, S. invicta occurrences were found in 7 counties beyond the current Quarantine and our data show that S. invicta has spread further than predicted. Our own species distribution model suggests that the distribution area for S. invicta is likely to increase under the projected climate change. This study provides insights into the range expansion of S. invicta at the border of its suitable habitat and allow for improvements to models of its spread under these conditions. Additionally, it provides useful information to inform county extension agents to know where they are to expect new infestations of S. invicta. Second, we investigated the impacts of pesticide residue on the behavior of S. invicta through neonicotinoid exposure. We found detectable levels of neonicotinoids in the soil of the ant mounds as well as in the ants themselves. In addition, we investigated the effects of dietary exposure to imidacloprid on foraging behavior in a laboratory setting. We found that unexposed colonies were able to locate the food source more quickly during the second trial while exposed ants were unable to improve their performance. We also found that more exposed ant workers were unable to successfully navigate the maze as compared to unexposed workers. Our results suggest impaired learning of maze tasks and impaired navigational skills in neonicotinoid-exposed ants.

Description

Keywords

invasion biology, red imported fire ant, neonicotinoid exposure, behavior

Citation

Collections