Use of Plant Growth Regulators to Increase Branching of Clematis Spp.

Files

TR Number

Date

2002-07-24

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Clematis spp. L. is a twining vine covered in showy blooms. Typical growth of hybrids is from the main leader, producing a thin, unbranched plant with one cyme. Apical dominance is released by cutting back the vine during production. Cutting back, or pinching, of a plant is labor intensive and compromises bloom for vegetative growth at time of sales. The purpose of this project was to eliminate manual pinching by treating young plants with chemical plant growth regulators (PGRs) that enhance branching without removal of the apical meristem. The first project evaluated the use of Atrimmec (dikegulac sodium), Fascination (BA+GA4+7), Florel (ethephon), and Dropp 50 (thidiazuron) on Clematis cultivars Ernest Markham, and Hagley Hybrid, and Clematis viticella 'Polish Spirit.' Plants treated with 800 mg·L-1 Atrimmec, or 800 or 1200 mg·L-1 Fascination experienced an increase in branch numbers. The second experiment manipulated the ratio of the components of Fascination, 6-BA and GA4+7, to reduce phytotoxicity experienced in the first experiment. The optimal ratio to enhance branching was 1:1, which is the stock solution for Fascination. All ratios produced phytotoxic symptoms. A third experiment tested lower rates of thidiazuron and added CPPU (forchlorfenuron) to the list of PGRs to test. The last experiment took the most effective PGR treatments, Atrimmec at 800 mg·L-1, and Fascination at 800 or 1200 mg·L-1, and compared them to the current production practices of pinching. Large flowering cultivars of clematis were used, including 'Comotesse de Bouchard,' 'Ernest Markham,' and 'Hagley Hybrid.' Atrimmec increased branch numbers and suppressed leader lengths without a mechanical pinch. Results from Fascination varied by cultivar.

Description

Keywords

GA4+7, ethephon, dikegulac, PGR, BA, thidiazuron, forchlorfenuron

Citation

Collections