Buried Pipe Life Prediction in Sewage Type Environments

Files

thesis.pdf (1.32 MB)
Downloads: 403

TR Number

Date

1999-02-06

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

In this study, we develop a method of life prediction of buried pipe using the concepts of a characteristic damage state and damage accumulation. A stress analysis corresponding to the different types of load during service with environmental effects, a moisture diffusion model, and a lifetime prediction analysis combining the above models has been constructed. The model uses an elasticity solution for axial-symmetric loading in the case of pressurized pipe, and an approximate non-linear solution for transverse loading due to soil pressure in the case of buried pipe. The axial-symmetric stress analysis has been constructed taking into account the moisture content and the temperature of each ply of the laminate. The moisture diffusion model takes into account the geometry of the laminate, the different diffusivity coefficients in each ply, and also the geometric changes due to ply failure. The failure mode and material behavior of the pipe has been investigated and identified according to Owens Corning data. Thus, the code that has been developed allows one to predict the time to failure of Owens Corning industrial pipes under any time-dependent profile of environmental and loading conditions.

Description

Keywords

Composite Pipe, Damage Accumulation, Life Prediction

Citation

Collections