Planning and Simulating Observations for a Sounding Rocket Experiment to Measure Polar Night Nitric Oxide in the Lower Thermosphere by Stellar Occultation

dc.contributor.authorThirukoveluri, Padma Lathaen
dc.contributor.committeechairBailey, Scott M.en
dc.contributor.committeememberScales, Wayne A.en
dc.contributor.committeememberHenderson, Troy A.en
dc.contributor.departmentElectrical and Computer Engineeringen
dc.date.accessioned2014-03-14T20:37:32Zen
dc.date.adate2011-07-25en
dc.date.available2014-03-14T20:37:32Zen
dc.date.issued2011-04-28en
dc.date.rdate2011-07-25en
dc.date.sdate2011-05-18en
dc.description.abstractThe objective of this thesis was to select a star for observation and determine the error in the retrieval technique for a rocket experiment to measure lower thermospheric Nitric Oxide in the polar night using stellar occultation technique. These objectives are accomplished by planning the geometry, determining the requirements for observations, window for launch and discussing the retrieval technique. The planning is carried out using an approximated (no drag) and simulated rocket trajectory (provided by NSROC: NASA Rocket Operations Contract). The simulation for the retrievals is done using data from Student Nitric Oxide Explorer. Stars were taken from a catalogue called TD1. Launch times were obtained from the geometry planned resulting from selecting a zenith angle after choosing a maximum occultation height and determining rocket apogee. Window for observing Spica was found to be 20 minutes. The retrieval technique and simulations showed that column densities and volume densities should be retrievable to less than 5% and 20% respectively observing occultation heights 90-120km. The study suggests that choosing a star positioned north w.r.t the observation location gives us more poleward latitudes and larger launch window. Future research can be carried out applying the stellar occultation and retrieval technique to a satellite.en
dc.description.degreeMaster of Scienceen
dc.identifier.otheretd-05182011-163321en
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-05182011-163321/en
dc.identifier.urihttp://hdl.handle.net/10919/32969en
dc.publisherVirginia Techen
dc.relation.haspartThirukoveluri_PL_T_2011.pdfen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectlaunch time selectionen
dc.subjectstar selectionen
dc.subjectrocket experimenten
dc.subjectrocket experiment simulationen
dc.subjectdensity retrieval techniquesen
dc.subjectstellar occultation techniqueen
dc.subjectrocket geometry planningen
dc.subjectrocket observation planningen
dc.titlePlanning and Simulating Observations for a Sounding Rocket Experiment to Measure Polar Night Nitric Oxide in the Lower Thermosphere by Stellar Occultationen
dc.typeThesisen
thesis.degree.disciplineElectrical Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Thirukoveluri_PL_T_2011.pdf
Size:
2.82 MB
Format:
Adobe Portable Document Format

Collections