The Effect of Carbon Concentration on the Amorphization and Properties of Mechanically Alloyed Cobalt-Carbon Alloys

dc.contributor.authorElmkharram, Hesham Moh A.en
dc.contributor.committeechairAning, Alexander O.en
dc.contributor.committeememberLu, Guo Quanen
dc.contributor.committeememberReynolds, William T.en
dc.contributor.committeememberSuchicital, Carlos T. A.en
dc.contributor.departmentMaterials Science and Engineeringen
dc.date.accessioned2022-10-20T06:00:08Zen
dc.date.available2022-10-20T06:00:08Zen
dc.date.issued2021-04-27en
dc.description.abstractMagnetic alloys that are amorphous exhibit soft magnetic properties; hence they play an essential role in electronic and electrical systems and devices. They are used in applications that include electrical power generation and transmission, electronic motors, solenoids, relays, magnetic shielding, and electromagnets. This work was an attempt to investigate the solid-state formation of Co-C amorphous alloys, their thermal stability and magnetic properties. Amorphous Co-C alloys with compositions of 2 to 40 at.% C were successfully synthesized from elemental Co and C (graphite) using mechanical alloying, a solid-state powder processing technique. All alloy compositions were milled for up 40 hours. After 20h of milling some of the alloys (≤ 20 at.% C) had partially amorphized, while the higher concentrations had completely amorphized. After 40h of milling, complete amorphization was observed in all alloys, except for the 2 and 5 at.% C alloys. The thermal analyses of the milled powders showed very interesting results. DSC results indicated that alloys with compositions through 20 at.% C crystalized in two steps; the lower temperature event precipitated metastable cobalt carbide from the amorphous phase, followed by the eventual transformation to fcc cobalt and graphite from both the remaining amorphous and the metastable carbide at the higher temperature. Two types of carbides were observed - Co3C in the 2 and 5 at.% C alloys, and Co2C in the higher carbon alloys through 20 at.% C. For compositions above 20 at.% C, only one step crystallization was observed, that of the decomposition of the amorphous phase to amorphous carbon and cobalt – primarily fcc phase. Activation energy calculations show that the low temperature carbide precipitation was controlled by carbon diffusion, while the high temperature decomposition reaction forming cobalt and amorphous carbon was controlled by cobalt diffusion. Room temperature magnetic measurements of the milled powders were made using vibrating sample magnetometer (VSM). High saturation magnetization (Ms) and very low coercivity (Hc) are desired for efficient performance of soft magnets. But in this study, Ms decreased with both carbon composition and milling time. It decreased from 195 Am2/kg for the un-milled pure Co to between 178 and 44 Am2/kg for the alloys, with the worst being the 40 at.% C sample milled for 40h. The Ms drop as function of composition made sense, as its related to the volume fraction of cobalt in the alloy. However, the Ms drop as a function of milling time is unclear. In the case of Hc, its value did drop from 12.7 kA/m for the un-milled pure Co to between 7.5 and 1.3 kA/m when the C content is less than 15 at.%. These gains are not significant enough to favor the use of these alloys as soft magnets. Amorphous metal alloys tend to have strengths that are much higher than their crystalline counterparts, and they have hardness values comparable to those of particulate ceramic materials used to reinforce metal matrices. The Co-C amorphous alloy with 40 at.% C that had been milled for 40h (the most stable of all the samples) was used to reinforce cobalt matrix by powder processing methods that included spark plasma sintering (SPS) at temperatures below those of crystallization. Volume fraction ranged from 1 to 20 % reinforcement. The densities of these composites were between 81 and 85 % of theoretical values, hence there were substantial porosities. Despite this the matrix strengthening of the cobalt matrix, as assessed by Vickers microhardness tests, was significant. Hardness increased from 210 HV for unreinforced matrix to 537 HV for the 20 vol.% amorphous. The primary contributor to the strengthening appears to be boundary strengthening by the particles whose average size of about 4 microns is comparable to the grain size of the matrices of the composites. The hardness data fits the Hall Petch-like relationship based on particle spacing. Having a reinforcement particle with a chemistry similar to that of the matrix as is the case in this study, has the potential to improve interfacial bonding and also minimize the difference between the components' coefficient of thermal expansions, which are major issues with the use of ceramics to reinforce metal matrices. The microstructures of the composites indicated good bonding at their interfaces.en
dc.description.abstractgeneralMagnetic alloys that are amorphous (have no long-range atomic order) exhibit soft magnetic material properties (easily magnetized and demagnetized); hence they play an essential role in electronic and electrical applications. This work investigated the solid-state formation of Cobalt-Carbon (Co-C) amorphous alloys, their thermal stability and magnetic properties. Amorphous Co-C alloys with compositions of 2 to 40 atomic weight % of C were successfully synthesized from elemental Co and C (as graphite) using a mechanical alloying technique (high-energy milling to alloy materials by impact). All alloy compositions were milled for up 40 hours. After 20h of milling some of the alloys (≤ 20 atomic weight % of C) had partially become amorphous, while the higher concentrations had completely become amorphous. After 40h of milling, complete amorphization was observed in all alloy compositions, except for the 2 and 5 atomic weight % of C alloys (2-5 atomic weight % of C). Thermal analyses (Differential Scanning Calorimetry, DSC) of the milled powders showed that alloys with compositions through 20 atomic weight % of C crystalized via a low temperature precipitation of a metastable cobalt carbide from the amorphous phase, followed by a high temperature transformation to a face centered cubic (fcc) cobalt and graphite phase from both the remaining amorphous and the metastable carbide. Activation energy calculations showed that the low temperature carbide precipitation was controlled by carbon diffusion, while the high temperature decomposition reaction forming cobalt and amorphous carbon was controlled by cobalt diffusion. High saturation magnetization (Ms) and very low coercivity (Hc) are desired for efficient performance of soft magnets. Thus, room temperature magnetic measurements of the milled powders were made using vibrating sample magnetometer (VSM). But in this study, Ms decreased with both carbon composition and milling time. The Ms drop as function of composition made sense, as its related to the volume fraction of cobalt in the alloy. However, the Ms drop as a function of milling time is unclear. In the case of Hc, its value did drop from 12.7 kA/m for the un-milled pure Co to between 7.5 and 1.3 kA/m when the C content is less than 15 atomic weight %. These gains are not significant enough to favor the use of these alloys as soft magnets. Amorphous metal alloys tend to have strengths that are much higher than their crystalline counterparts, and they have hardness values comparable to those of particulate ceramic materials used to reinforce metal matrices. The Co-C amorphous alloy with 40 atomic weight % of C that had been milled for 40h was used to reinforce cobalt matrix by powder processing methods (including spark plasma sintering (SPS) at temperatures below those of crystallization). The densities of these composites were between 81 and 85 % of theoretical values and hence there was substantial porosity. Despite this the matrix strengthening of the cobalt matrix, as assessed by Vickers microhardness tests, was significant. The primary contributor to the strengthening appeared to be boundary strengthening by the particles whose average size of about 4 microns was comparable to the grain size of the matrices of the composites. Having a reinforcement particle with a chemistry similar to that of the matrix has the potential to improve interfacial bonding and also minimize the difference between the components' coefficient of thermal expansions, which are major issues with the use of ceramics to reinforce metal matrices. The microstructures of the composites indicated good bonding at their interfaces.en
dc.description.degreeDoctor of Philosophyen
dc.format.mediumETDen
dc.identifier.othervt_gsexam:30043en
dc.identifier.urihttp://hdl.handle.net/10919/112231en
dc.publisherVirginia Techen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectMechanical Alloyingen
dc.subjectamorphous Co-C alloyen
dc.subjectCrystallization Reactionsen
dc.subjectMetal Matrix Compositesen
dc.subjectParticles Reinforcementen
dc.titleThe Effect of Carbon Concentration on the Amorphization and Properties of Mechanically Alloyed Cobalt-Carbon Alloysen
dc.typeDissertationen
thesis.degree.disciplineMaterials Science and Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.leveldoctoralen
thesis.degree.nameDoctor of Philosophyen

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Elmkharram_HM_D_2021.pdf
Size:
11.14 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Elmkharram_HM_D_2021_support_3.pdf
Size:
11.14 MB
Format:
Adobe Portable Document Format
Description:
Supporting documents