Use of Kinase Inhibitors to Illuminate Signaling Pathways in Breast Cancer

dc.contributor.authorSmith, Nicole R.en
dc.contributor.committeechairLazar, Iuliana M.en
dc.contributor.committeememberValdez, Gregorioen
dc.contributor.committeememberKojima, Shihokoen
dc.contributor.departmentBiological Sciencesen
dc.date.accessioned2019-07-27T06:00:27Zen
dc.date.available2019-07-27T06:00:27Zen
dc.date.issued2018-02-01en
dc.description.abstractIn the United States, breast cancer is the most commonly diagnosed cancer and is the second most common cause of cancer-related deaths among women. Among the various subtypes of breast cancer, 25-30% of diagnoses present themselves as human epidermal growth factor receptor 2 positive (HER-2+). HER-2 is a protein receptor located on the cell surface that interacts with other proteins and signaling molecules to translate extracellular signals into cellular process such as cell growth and replication. However, in breast cancer, there is a drastic increase in the number of HER-2 proteins on the cell surface, that causes excessive cell growth and proliferation, and ultimately tumor formation. The most frequent treatment of HER-2+ breast cancers includes the use of a single agent inhibitor that directly blocks the HER-2 protein to prevent over-signaling and cell growth. However, after continuous use, breast cancer cells develop drug resistance, as other proteins such as the insulin-like growth factor 1 receptor (IGF-1R) and the protein kinase B (AKT) can also interfere and cause cell growth and replication. In this study, we propose that the use of a multi-agent treatment targeting the HER-2, IGF-1R, and AKT proteins will be more effective than a single-agent treatment of HER-2 alone. Through protein analysis by mass spectrometry, we intend to illuminate the different cellular responses to both treatment types. The results indicate that the single drug treatment targeting Her-2 appears to increase processes related cellular repair, while the multi-drug treatment indicates an increase in processes related to programmed cell death; both treatments appear to block the transmission of protein signaling.en
dc.description.abstractgeneralIn the United States, breast cancer is the most commonly diagnosed cancer and is the second most common cause of cancer-related deaths among women. Among the various subtypes of breast cancer, 25-30% of diagnoses present themselves as human epidermal growth factor receptor 2 positive (HER-2+). HER-2 is a protein receptor located on the cell surface that interacts with other proteins and signaling molecules to translate extracellular signals into cellular process such as cell growth and replication. However, in breast cancer, there is a drastic increase in the number of HER-2 proteins on the cell surface, that causes excessive cell growth and proliferation, and ultimately tumor formation. The most frequent treatment of HER-2+ breast cancers includes the use of a single agent inhibitor that directly blocks the HER-2 protein to prevent over-signaling and cell growth. However, after continuous use, breast cancer cells develop drug resistance, as other proteins such as the insulin-like growth factor 1 receptor (IGF-1R) and the protein kinase B (AKT) can also interfere and cause cell growth and replication. In this study, we propose that the use of a multi-agent treatment targeting the HER-2, IGF-1R, and AKT proteins will be more effective than a single-agent treatment of HER-2 alone. Through protein analysis by mass spectrometry, we intend to illuminate the different cellular responses to both treatment types. The results indicate that the single drug treatment targeting Her-2 appears to increase processes related cellular repair, while the multi-drug treatment indicates an increase in processes related to programmed cell death; both treatments appear to block the transmission of protein signaling.en
dc.description.degreeMSen
dc.format.mediumETDen
dc.identifier.othervt_gsexam:14203en
dc.identifier.urihttp://hdl.handle.net/10919/92002en
dc.publisherVirginia Techen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectbreast canceren
dc.subjectSKBR3en
dc.subjectmass spectrometryen
dc.subjectproteomicsen
dc.subjectLapatiniben
dc.subjectLinsitiniben
dc.subjectGDC-0068en
dc.titleUse of Kinase Inhibitors to Illuminate Signaling Pathways in Breast Canceren
dc.typeThesisen
thesis.degree.disciplineBiological Sciencesen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMSen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Smith_NR_T_2018.pdf
Size:
2.42 MB
Format:
Adobe Portable Document Format

Collections