On the Spectrum of Neutron Transport Equations with Reflecting Boundary Conditions

Files
dsong.pdf (699.77 KB)
Downloads: 332
TR Number
Date
2000-02-14
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

This dissertation is devoted to investigating the time dependent neutron transport equations with reflecting boundary conditions. Two typical geometries --- slab geometry and spherical geometry --- are considered in the setting of L^p including L^1. Some aspects of the spectral properties of the transport operator A and the strongly continuous semigroup T(t) generated by A are studied. It is shown under fairly general assumptions that the accumulation points of { m Pas}(A):=sigma (A) cap { lambda :{ m Re}lambda > -lambda^{ast} }, if they exist, could only appear on the line { m Re}lambda =-lambda^{ast}, where lambda^{ast} is the essential infimum of the total collision frequency. The spectrum of T(t) outside the disk {lambda : |lambda| leq exp (-lambda^{ast} t)} consists of isolated eigenvalues of T(t) with finite algebraic multiplicity, and the accumulation points of sigma (T(t)) igcap{ lambda : |lambda| > exp (-lambda^{ast} t)}, if they exist, could only appear on the circle {lambda :|lambda| =exp (-lambda^{ast} t)}. Consequently, the asymptotic behavior of the time dependent solution is obtained.

Description
Keywords
transport equation, spectrum, stability, strongly continuous semigroup
Citation