On the Spectrum of Neutron Transport Equations with Reflecting Boundary Conditions
dc.contributor.author | Song, Degong | en |
dc.contributor.committeechair | Greenberg, William | en |
dc.contributor.committeemember | Haskell, Peter E. | en |
dc.contributor.committeemember | Kohler, Werner E. | en |
dc.contributor.committeemember | Klaus, Martin | en |
dc.contributor.committeemember | Hagedorn, George A. | en |
dc.contributor.department | Mathematics | en |
dc.date.accessioned | 2014-03-14T20:08:02Z | en |
dc.date.adate | 2000-03-17 | en |
dc.date.available | 2014-03-14T20:08:02Z | en |
dc.date.issued | 2000-02-14 | en |
dc.date.rdate | 2001-03-17 | en |
dc.date.sdate | 2000-03-07 | en |
dc.description.abstract | This dissertation is devoted to investigating the time dependent neutron transport equations with reflecting boundary conditions. Two typical geometries --- slab geometry and spherical geometry --- are considered in the setting of <I>L^p</I> including <I>L^1</I>. Some aspects of the spectral properties of the transport operator <I>A</I> and the strongly continuous semigroup <I>T(t)</I> generated by <I>A</I> are studied. It is shown under fairly general assumptions that the accumulation points of { m Pas}(A):=sigma (A) cap { lambda :{ m Re}lambda > -lambda^{ast} }, if they exist, could only appear on the line { m Re}lambda =-lambda^{ast}, where lambda^{ast} is the essential infimum of the total collision frequency. The spectrum of <I>T(t)</I> outside the disk {lambda : |lambda| leq exp (-lambda^{ast} t)} consists of isolated eigenvalues of <I>T(t)</I> with finite algebraic multiplicity, and the accumulation points of sigma (T(t)) igcap{ lambda : |lambda| > exp (-lambda^{ast} t)}, if they exist, could only appear on the circle {lambda :|lambda| =exp (-lambda^{ast} t)}. Consequently, the asymptotic behavior of the time dependent solution is obtained. | en |
dc.description.degree | Ph. D. | en |
dc.identifier.other | etd-03072000-23200015 | en |
dc.identifier.sourceurl | http://scholar.lib.vt.edu/theses/available/etd-03072000-23200015/ | en |
dc.identifier.uri | http://hdl.handle.net/10919/26375 | en |
dc.publisher | Virginia Tech | en |
dc.relation.haspart | dsong.pdf | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | transport equation | en |
dc.subject | spectrum | en |
dc.subject | stability | en |
dc.subject | strongly continuous semigroup | en |
dc.title | On the Spectrum of Neutron Transport Equations with Reflecting Boundary Conditions | en |
dc.type | Dissertation | en |
thesis.degree.discipline | Mathematics | en |
thesis.degree.grantor | Virginia Polytechnic Institute and State University | en |
thesis.degree.level | doctoral | en |
thesis.degree.name | Ph. D. | en |
Files
Original bundle
1 - 1 of 1