Operando characterization and regulation of metal dissolution and redeposition dynamics near battery electrode surface

dc.contributor.authorZhang, Yuxinen
dc.contributor.authorHu, Anyangen
dc.contributor.authorXia, Daweien
dc.contributor.authorHwang, Sooyeonen
dc.contributor.authorSainio, Samien
dc.contributor.authorNordlund, Dennisen
dc.contributor.authorMichel, F. Marcen
dc.contributor.authorMoore, Robert B.en
dc.contributor.authorLi, Luxien
dc.contributor.authorLin, Fengen
dc.date.accessioned2024-01-30T13:25:59Zen
dc.date.available2024-01-30T13:25:59Zen
dc.date.issued2023-07en
dc.description.abstractMn dissolution has been a long-standing, ubiquitous issue that negatively impacts the performance of Mn-based battery materials. Mn dissolution involves complex chemical and structural transformations at the electrode–electrolyte interface. The continuously evolving electrode–electrolyte interface has posed great challenges for characterizing the dynamic interfacial process and quantitatively establishing the correlation with battery performance. In this study, we visualize and quantify the temporally and spatially resolved Mn dissolution/redeposition (D/R) dynamics of electrochemically operating Mn-containing cathodes. The particle-level and electrode-level analyses reveal that the D/R dynamics is associated with distinct interfacial degradation mechanisms at different states of charge. Our results statistically differentiate the contributions of surface reconstruction and Jahn–Teller distortion to the Mn dissolution at different operating voltages. Introducing sulfonated polymers (Nafion) into composite electrodes can modulate the D/R dynamics by trapping the dissolved Mn species and rapidly establishing local Mn D/R equilibrium. This work represents an inaugural effort to pinpoint the chemical and structural transformations responsible for Mn dissolution via an operando synchrotron study and develops an effective method to regulate Mn interfacial dynamics for improving battery performance.en
dc.description.versionPublished versionen
dc.format.extent17 page(s)en
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1038/s41565-023-01367-6en
dc.identifier.eissn1748-3395en
dc.identifier.issn1748-3387en
dc.identifier.issue7en
dc.identifier.orcidMichel, Frederick [0000-0003-2817-980X]en
dc.identifier.orcidMoore, Robert [0000-0001-9057-7695]en
dc.identifier.orcidLin, Feng [0000-0002-3729-3148]en
dc.identifier.other10.1038/s41565-023-01367-6 (PII)en
dc.identifier.pmid37081082en
dc.identifier.urihttps://hdl.handle.net/10919/117732en
dc.identifier.volume18en
dc.language.isoenen
dc.publisherNature Portfolioen
dc.relation.urihttps://www.ncbi.nlm.nih.gov/pubmed/37081082en
dc.rightsPublic Domain (U.S.)en
dc.rights.urihttp://creativecommons.org/publicdomain/mark/1.0/en
dc.titleOperando characterization and regulation of metal dissolution and redeposition dynamics near battery electrode surfaceen
dc.title.serialNature Nanotechnologyen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.otherArticleen
dc.type.otherJournalen
dcterms.dateAccepted2023-03-09en
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/Scienceen
pubs.organisational-group/Virginia Tech/Science/Chemistryen
pubs.organisational-group/Virginia Tech/Science/Geosciencesen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Science/COS T&R Facultyen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s41565-023-01367-6.pdf
Size:
9.59 MB
Format:
Adobe Portable Document Format
Description:
Published version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Plain Text
Description: