Evaluation of an Effluent Treatment Strategy to Control Nitrogen From a Recirculating Aquaculture Facility

dc.contributor.authorBrazil, Brian Ligaren
dc.contributor.committeechairLove, Nancy G.en
dc.contributor.committeememberNovak, John T.en
dc.contributor.committeememberBoardman, Gregory D.en
dc.contributor.departmentEnvironmental Engineeringen
dc.date.accessioned2014-03-14T20:46:46Zen
dc.date.adate2001-11-28en
dc.date.available2014-03-14T20:46:46Zen
dc.date.issued2001-10-04en
dc.date.rdate2004-11-28en
dc.date.sdate2001-10-17en
dc.description.abstractThe ability of a self-contained denitrification system, using fermentation products from waste fish solids, to maintain reliable performance was studied. Denitrification performance was described kinetically and stoichiometrically under different initial nitrate-nitrogen and soluble organic carbon to nitrate-nitrogen ratios. Characterization of soluble organic carbon (measured as soluble chemical oxygen demand, sCOD) indicated that volatile fatty acids (VFA) were generated during the fermentation of the waste fish solids. The results from batch experiments showed that over the range of initial nitrate concentrations studied, complete denitrification was achieved within 6 hrs. sCOD, nitrite, and nitrate profiles across several batch experiments showed that transient nitrite accumulations occurred, but the maximum measured concentrations never completely inhibited nitrate removal. The results suggested that the rate of denitrification was influenced by the initial sCOD to nitrate-nitrogen ratio when transient nitrite concentrations remained below 20 mg/L. However, when nitrite-nitrogen exceeded 25 mg/L, the rate of denitrification was negatively correlated with the maximum measured nitrite-nitrogen concentration. The stoichiometric carbon requirement was not correlated to any parameters believed to influence carbon consumption. After complete denitrification was achieved residual sCOD was still measured, which could not be identified as VFAs. Batch aerobic treatment of denitrified effluent resulted in a 60 to 70 % removal of the residual sCOD when allowed to react for 8 days. It was further determined that the residual sCOD exerted an oxygen of 5.81 on g COD/g C. Additional studies were conducted to maximize sCOD production during fermentation. Increasing the fermentation temperature from 28 oC to 40 oC facilitated a 36 % increase in the specific sCOD production rate (g sCOD/ g fish solids applied). In addition to sCOD production, ammonia production increased 20 % when the fermentation was conducted at the elevated temperature. An analysis comparing the cost of methanol addition to support denitrification to the cost associated with fermenting waste fish solids indicated that supplementing fermentation products with methanol resulted in the least costly strategy for promoting denitrification of an aquaculture waste stream.en
dc.description.degreeMaster of Scienceen
dc.identifier.otheretd-10172001-090020en
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-10172001-090020/en
dc.identifier.urihttp://hdl.handle.net/10919/35413en
dc.publisherVirginia Techen
dc.relation.haspartbrazil3.pdfen
dc.relation.haspartbrazil2.pdfen
dc.relation.haspartbrazil1.pdfen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectbiological treatmenten
dc.subjectaquacultureen
dc.subjectfermentationen
dc.subjectwaste solidsen
dc.subjectdenitrificationen
dc.titleEvaluation of an Effluent Treatment Strategy to Control Nitrogen From a Recirculating Aquaculture Facilityen
dc.typeThesisen
thesis.degree.disciplineEnvironmental Planningen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
brazil1.pdf
Size:
8.83 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
brazil2.pdf
Size:
17.86 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
brazil3.pdf
Size:
276.46 KB
Format:
Adobe Portable Document Format

Collections