A probabilistic approach to driver assistance for delay reduction at congested highway lane drops


TR Number



Journal Title

Journal ISSN

Volume Title




This paper proposes an onboard advance warning system based on a probabilistic prediction model that advises vehicles on when to change lanes for an upcoming lane drop. Using several traffic- and driver-related parameters such as the distribution of inter-vehicle headway distances, the prediction model calculates the likelihood of utilizing one or multiple lane changes to successfully reach a target position on the road. When approaching a lane drop, the onboard system projects current vehicle conditions into the future and uses the model to continuously estimate the success probability of changing lanes before reaching the lane-end, and advises the driver or autonomous vehicle to start a lane changing maneuver when that probability drops below a certain threshold. In a simulation case study, the proposed system was used on a segment of the I-81 interstate highway with two lane drops – transitioning from four lanes to two lanes – to advise vehicles on avoiding the lane drops. The results indicate that the proposed system can reduce average delay by up to 50% and maximum delay by up to 33%, depending on traffic flow and the ratio of vehicles equipped with the advance warning system.



eess.SY, cs.SY