Development and Testing of a Capacitor Probe to Detect Deterioration in Portland Cement Concrete


thesis.PDF (1.59 MB)
Downloads: 220

TR Number



Journal Title

Journal ISSN

Volume Title


Virginia Tech


Portland cement concrete (PCC) structures deteriorate with age and need to be maintained or replaced. Early detection of deterioration in PCC (e.g., alkali-silica reaction, freeze/thaw damage or chloride presence) can lead to significant reductions in maintenance costs. Portland cement concrete can be nondestructively evaluated by electrically characterizing its complex dielectric constant in a laboratory setting. A parallel-plate capacitor operating in the frequency range of 0.1 to 40.1 MHz was developed at Virginia Tech for this purpose. While useful in research, this approach is not practical for field implementation. In this study, a capacitor probe was designed and fabricated to determine the in-situ dielectric properties of PCC over a frequency range of 2.0 to 20.0 MHz. It is modeled after the parallel-plate capacitor in that it consists of two conducting plates with a known separation. The conducting plates are flexible, which allows them to conform to different geometric shapes. Prior to PCC testing, measurements were conducted to determine the validity of such a system by testing specimens possessing known dielectric properties (Teflon). Portland cement concrete specimens were cast (of sufficient size to prevent edge diffraction of the electromagnetic waves) having two different air contents, two void thicknesses, and two void depths (from the specimen's surface). Two specimens were cast for each parameter and their results were averaged. The dielectric properties over curing time were measured for all specimens, using the capacitor probe and the parallel-plate capacitor. The capacitor probe showed a decrease in dielectric constant with increasing curing time and/or air content. In addition to measuring dielectric properties accurately and monitoring the curing process, the capacitor probe was also found to detect the presence and relative depth of air voids, however, determining air void thickness was difficult.



nondestructive evaluation, nondestructive testing, dielectric properties, infrastructure assessment, parallel-plate capacitor, capacitor probe, PCC