The Impact of Cyberattacks on Safe and Efficient Operations of Connected and Autonomous Vehicles

TR Number

Date

2021-09-01

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

The landscape of vehicular transportation is quickly shifting as emerging technologies continue to increase in intelligence and complexity. From the introduction of Intelligent Transportation Systems (ITS) to the quickly developing field of Connected and Autonomous Vehicles (CAVs), the transportation industry is experiencing a shift in focus. A move to more autonomous and intelligent transportation systems brings with it a promise of increased equity, efficiency, and safety. However, one aspect that is overlooked in this shift is cybersecurity.

As intelligent systems and vehicles have been introduced, a large amount of research has been conducted showing vulnerabilities in them. With a new connected transportation system emerging, a multidisciplinary approach will be required to develop a cyber-resilient network. Ensuring protection against cyberattacks and developing a system that can handle their consequences is a key objective moving forward. The first step to developing this system is understanding how different cyberattacks can negatively impact the operations of the transportation system.

This research aimed to quantify the safety and efficiency impacts of an attack on the transportation network. To do so, a simulation was developed using Veins software to model a network of intelligent intersections in an urban environment. Vehicles communicated with Road-Side Units (RSUs) to make intersection reservations – effectively simulating CAV vehicle network. Denial of Service (DoS) and Man in the Middle (MITM) attacks were simulated by dropping and delaying vehicle's intersection reservation requests, respectively. Attacks were modeled with varying degrees of severity by changing the number of infected RSUs in the system and their attack success rates.

Data analysis showed that severe attacks, either from a DoS or MITM attack, can have significant impact on the transportation network's operations. The worst-case scenario for each introduced an over 20% increase in delay per vehicle. The simulation showed also that increasing the number of compromised RSUs directly related to decreased safety and operational efficiency. Successful attacks also produced a high level of variance in their impact. One other key finding was that a single compromised RSU had very limited impact on the transportation network.

These findings highlight the importance of developing security and resilience in a connected vehicle environment. Building a network that can respond to an initial attack and prevent an attack's dissemination through the network is crucial in limiting the negative effects of the attack. If proper resilience planning is not implemented for the next generation of transportation, adversaries could cause great harm to safety and efficiency with relative ease. The next generation of vehicular transportation must be able to withstand cyberattacks to function. Understanding their impact is a key first step for engineers and planners on the long road to ensuring a secure transportation network.

Description

Keywords

Cybersecurity, Autonomous Vehicles, Cavs, Dos, MITM, Transportation Safety, Traffic Operation, Modeling, Resilience, Risk, Impact, RSU, V2X Communication, VANET, ITS, Autonomous Vehicles, Simulation, Veins, Cyberattacks

Citation

Collections