Impact of Discretization Techniques on Nonlinear Model Reduction and Analysis of the Structure of the POD Basis

Files

TR Number

Date

2013-11-19

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

In this thesis a numerical study of the one dimensional viscous Burgers equation is conducted. The discretization techniques Finite Differences, Finite Element Method and Group Finite Elements are applied and their impact on model reduction techniques, namely Proper Orthogonal Decomposition (POD), Group POD and the Discrete Empirical Interpolation Method (DEIM), is studied. This study is facilitated by examination of several common ODE solvers. Embedded in this process, some results on the structure of the POD basis and an alternative algorithm to compute the POD subspace are presented. Various numerical studies are conducted to compare the different methods and the to study the interaction of the spatial discretization on the ROM through the basis functions. Moreover, the results are used to investigate the impact of Reduced Order Models (ROM) on Optimal Control Problems. To this end, the ROM is embedded in a Trust Region Framework and the convergence results of Arian et al. (2000) is extended to POD-DEIM. Based on the convergence theorem and the results of the numerical studies, the emphasis is on implementation strategies for numerical speedup.

Description

Keywords

nonlinear model reduction, burgers equation, pod, deim, trust region pod

Citation

Collections