Synthesis and Characterization of Hydrophobic-Hydrophilic  Multiblock Copolymers for Proton Exchange Membrane and Segmented Copolymer Precursors for Reverse Osmosis Applications

dc.contributor.authorMehta, Ishanen
dc.contributor.committeechairTurner, S. Richarden
dc.contributor.committeememberMecham, Beverly S.en
dc.contributor.committeememberRiffle, Judy S.en
dc.contributor.departmentMacromolecular Science and Engineeringen
dc.date.accessioned2014-07-04T08:00:45Zen
dc.date.available2014-07-04T08:00:45Zen
dc.date.issued2014-07-03en
dc.description.abstractHigh performance engineering materials, poly(arylene ether)s, having very good mechanical properties, excellent oxidative and hydrolytic stability are promising candidates for alternative materials used in the field of Proton Exchange Membrane Fuel Cells (PEMFCs) and Reverse Osmosis (RO) applications. In particular, wholly aromatic sulfonated poly(arylene ether sulfone)s are of considerable interest in the field of PEMFCs and RO, due to their affordability, high Tg, and the ease of sulfonation. Proton exchange membrane fuels cells (PEMFCs) are one of the primary alternate source of energy. A Proton exchange membrane (PEM) is one of the key component in a PEMFC and it needs to have good proton conductivity under partially humidified conditions. One of the strategies to increase proton conductivity under partially RH conditions is to synthesize hydrophobic-hydrophilic multiblock copolymers with high Ion exchange capacity (IEC) values to ensure sufficient ion channel size. In this thesis two multiblock systems were synthesized incorporating trisulfonated hydrophilic oligomers and were characterized in the first two chapters of the thesis. The first multiblock system incorporated a non-fluorinated biphenol-based hydrophobic block. The second study was focused on synthesizing a fluorinated benzonitrile-based hydrophobic block. A fluorinated monomer was incorporated with the aim to improve phase separation which might lead to increased performance under partially humidified conditions. The third study featured synthesis and characterization of a novel hydroquinone-based random copolymer system precursor, which after post-sulfonation, shall form mono-sulfonated polysulfone materials with potential applications in reverse osmosis. The ratio of the amount of hydroquinone incorporated in the copolymer were varied during the synthesis of the precursor to facilitate control over the post-sulfonation process. The simple and low cost process of post-sulfonating the random copolymer enables the precursor to be a promising material to be used in the reverse osmosis application.en
dc.description.degreeMaster of Scienceen
dc.format.mediumETDen
dc.identifier.othervt_gsexam:3373en
dc.identifier.urihttp://hdl.handle.net/10919/49382en
dc.publisherVirginia Techen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectProton exchange membranesen
dc.subjecthydrophobic-hydrophilic multiblock copolymersen
dc.subjectreverse osmosisen
dc.titleSynthesis and Characterization of Hydrophobic-Hydrophilic  Multiblock Copolymers for Proton Exchange Membrane and Segmented Copolymer Precursors for Reverse Osmosis Applicationsen
dc.typeThesisen
thesis.degree.disciplineMacromolecular Science and Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Mehta_I_T_2014.pdf
Size:
3.91 MB
Format:
Adobe Portable Document Format

Collections