Improved Resonant Converters with a Novel Control Strategy for High-Voltage Pulsed Power Supplies

dc.contributor.authorFu, Dianboen
dc.contributor.committeechairLee, Fred C.en
dc.contributor.committeememberWang, Fei Freden
dc.contributor.committeememberLiu, Yiluen
dc.contributor.departmentElectrical and Computer Engineeringen
dc.date.accessioned2014-03-14T20:43:01Zen
dc.date.adate2004-08-10en
dc.date.available2014-03-14T20:43:01Zen
dc.date.issued2004-07-26en
dc.date.rdate2007-08-10en
dc.date.sdate2004-08-09en
dc.description.abstractThe growing demand for high voltage, compact pulsed power supplies has gained great attention. It requires power supplies with high power density, low profile and high efficiency. In this thesis, topologies and techniques are investigated to meet and exceed these challenges. Non-isolation type topologies have been used for this application. Due to the high voltage stress of the output, non-isolation topologies will suffer severe loss problems. Extremely low switching frequency will lead to massive magnetic volume. For non-isolation topologies, PWM converters can achieve soft switching to increase switching frequency. However, for this application, due to the large voltage regulation range and high voltage transformer nonidealities, it is difficult to optimize PWM converters. Secondary diode reverse recovery is another significant issue for PWM techniques. Resonant converters can achieve ZCS or ZVS and result in very low switching loss, thus enabling power supplies to operate at high switching frequency. Furthermore, the PRC and LCC resonant converter can fully absorb the leakage inductance and parasitic capacitance. With a capacitive output filter, the secondary diode will achieve natural turn-off and overcome reverse recovery problems. With a three-level structure, low voltage MOSFETs can be applied for this application. Switching frequency is increased to 200 kHz. In this paper, the power factor concept for resonant converters is proposed and analyzed. Based on this concept, a new methodology to measure the performance of resonant converters is presented. The optimal design guideline is provided. A novel constant power factor control is proposed and studied. Based on this control scheme, the performance of the resonant converter will be improved significantly. Design trade-offs are analyzed and studied. The optimal design aiming to increase the power density is investigated. The parallel resonant converter is proven to be the optimum topology for this application. The power density of 31 W/inch3 can be achieved by using the PRC topology with the constant power factor control.en
dc.description.degreeMaster of Scienceen
dc.identifier.otheretd-08092004-014429en
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-08092004-014429/en
dc.identifier.urihttp://hdl.handle.net/10919/34432en
dc.publisherVirginia Techen
dc.relation.haspartDianbo_Fu_ETD.pdfen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectresonant converteren
dc.subjecthigh power densityen
dc.subjectPulsed power supplyen
dc.subjectpower factoren
dc.titleImproved Resonant Converters with a Novel Control Strategy for High-Voltage Pulsed Power Suppliesen
dc.typeThesisen
thesis.degree.disciplineElectrical and Computer Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dianbo_Fu_ETD.pdf
Size:
3.04 MB
Format:
Adobe Portable Document Format
Collections