A modular curriculum to teach undergraduates ecological forecasting improves student and instructor confidence in their data science skills

dc.contributor.authorLofton, Mary E.en
dc.contributor.authorMoore, Tadhg N.en
dc.contributor.authorWoelmer, Whitney M.en
dc.contributor.authorThomas, R. Quinnen
dc.contributor.authorCarey, Cayelan C.en
dc.date.accessioned2024-10-21T19:37:31Zen
dc.date.available2024-10-21T19:37:31Zen
dc.date.issued2024-10-10en
dc.description.abstractData science skills (e.g., analyzing, modeling, and visualizing large data sets) are increasingly needed by undergraduates in the life sciences. However, a lack of both student and instructor confidence in data science skills presents a barrier to their inclusion in undergraduate curricula. To reduce this barrier, we developed four teaching modules in the Macrosystems EDDIE (for environmental data-driven inquiry and exploration) program to introduce undergraduate students and instructors to ecological forecasting, an emerging subdiscipline that integrates multiple data science skills. Ecological forecasting aims to improve natural resource management by providing future predictions of ecosystems with uncertainty. We assessed module efficacy with 596 students and 26 instructors over 3 years and found that module completion increased students’ confidence in their understanding of ecological forecasting and instructors’ likelihood to work with long-term, high-frequency sensor network data. Our modules constitute one of the first formalized data science curricula on ecological forecasting for undergraduates.en
dc.description.versionAccepted versionen
dc.format.extent12 page(s)en
dc.format.mimetypeapplication/vnd.openxmlformats-officedocument.wordprocessingml.documenten
dc.identifier.doihttps://doi.org/10.1093/biosci/biae089en
dc.identifier.eissn1525-3244en
dc.identifier.issn0006-3568en
dc.identifier.orcidThomas, Robert [0000-0003-1282-7825]en
dc.identifier.orcidCarey, Cayelan [0000-0001-8835-4476]en
dc.identifier.urihttps://hdl.handle.net/10919/121359en
dc.language.isoenen
dc.publisherOxford University Pressen
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en
dc.subjectecosystem modelingen
dc.subjectNational Ecological Observatory Network (NEON)en
dc.subjectstudent engagementen
dc.subjecttraining programen
dc.subjectundergraduate educationen
dc.titleA modular curriculum to teach undergraduates ecological forecasting improves student and instructor confidence in their data science skillsen
dc.title.serialBioScienceen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.otherArticleen
dc.type.otherEarly Accessen
dc.type.otherJournalen
pubs.organisational-groupVirginia Techen
pubs.organisational-groupVirginia Tech/Scienceen
pubs.organisational-groupVirginia Tech/Science/Biological Sciencesen
pubs.organisational-groupVirginia Tech/All T&R Facultyen
pubs.organisational-groupVirginia Tech/Science/COS T&R Facultyen
pubs.organisational-groupVirginia Tech/Post-docsen

Files

Original bundle
Now showing 1 - 1 of 1
Name:
Lofton_et_al_2024_BioScience_authors_accepted_version.docx
Size:
938.97 KB
Format:
Microsoft Word XML
Description:
Accepted version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Plain Text
Description: