Stiff and strong, lightweight bi-material sandwich plate-lattices with enhanced energy absorption

dc.contributor.authorHsieh, Meng-Tingen
dc.contributor.authorHa, Chan Sooen
dc.contributor.authorXu, Zhenpengen
dc.contributor.authorKim, Seokpumen
dc.contributor.authorWu, H. Felixen
dc.contributor.authorKunc, Vlastimilen
dc.contributor.authorZheng, Xiaoyuen
dc.date.accessioned2022-01-25T21:42:15Zen
dc.date.available2022-01-25T21:42:15Zen
dc.date.issued2021-08-17en
dc.date.updated2022-01-25T21:42:12Zen
dc.description.abstractPlate-based lattices are predicted to reach theoretical Hashin–Shtrikman and Suquet upper bounds on stiffness and strength. However, simultaneously attaining high energy absorption in these plate-lattices still remains elusive, which is critical for many structural applications such as shock wave absorber and protective devices. In this work, we present bi-material isotropic cubic + octet sandwich plate-lattices composed of carbon fiber-reinforced polymer (stiff) skins and elastomeric (soft) core. This bi-material configuration enhances their energy absorption capability while retaining stretching-dominated behavior. We investigate their mechanical properties through an analytical model and finite element simulations. Our results show that they achieve enhanced energy absorption approximately 2–2.8 times higher than their homogeneous counterparts while marginally compromising their stiffness and strength. When compared to previously reported materials, these materials achieve superior strength-energy absorption characteristics, making them an excellent candidate for stiff and strong, lightweight energy absorbing applications. Graphic Abstract: [Figure not available: see fulltext.]en
dc.description.versionPublished versionen
dc.format.extentPages 3628-3641en
dc.format.extent14 page(s)en
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1557/s43578-021-00322-2en
dc.identifier.eissn2044-5326en
dc.identifier.issn0884-2914en
dc.identifier.issue18en
dc.identifier.orcidZheng, Xiaoyu [0000-0001-8685-5728]en
dc.identifier.orcidHa, Chan Soo [0000-0003-3314-2657]en
dc.identifier.urihttp://hdl.handle.net/10919/107916en
dc.identifier.volume36en
dc.language.isoenen
dc.publisherSpringeren
dc.relation.urihttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000686563900003&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=930d57c9ac61a043676db62af60056c1en
dc.rightsPublic Domainen
dc.rights.urihttp://creativecommons.org/publicdomain/mark/1.0/en
dc.subjectTechnologyen
dc.subjectMaterials Scienceen
dc.subjectINTERPENETRATING PHASE COMPOSITESen
dc.subjectFRACTURE-TOUGHNESSen
dc.subjectPOLYMERen
dc.subjectBEHAVIORen
dc.subjectFOAMSen
dc.subjectSTRENGTHen
dc.subjectMaterialsen
dc.subject0204 Condensed Matter Physicsen
dc.subject0912 Materials Engineeringen
dc.subject0913 Mechanical Engineeringen
dc.titleStiff and strong, lightweight bi-material sandwich plate-lattices with enhanced energy absorptionen
dc.title.serialJournal of Materials Researchen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.otherArticleen
dc.type.otherJournalen
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/Engineeringen
pubs.organisational-group/Virginia Tech/Engineering/Mechanical Engineeringen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Engineering/COE T&R Facultyen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Hsieh et al. - 2021 - Stiff and strong, lightweight bi-material sandwich.pdf
Size:
2.74 MB
Format:
Adobe Portable Document Format
Description:
Published version