VTechWorks staff will be away for the Thanksgiving holiday beginning at noon on Wednesday, November 27, through Friday, November 29. We will resume normal operations on Monday, December 2. Thank you for your patience.
 

Cooperative Payload Transportation by UAVs: A Model-Based Deep Reinforcement Learning (MBDRL) Application

TR Number

Date

2024-08-20

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

We propose a Model-Based Deep Reinforcement Learning (MBDRL) framework for collaborative paylaod transportation using Unmanned Aerial Vehicles (UAVs) in Search and Rescue (SAR) missions, enabling heavier payload conveyance while maintaining vehicle agility. Our approach extends the single-drone application to a novel multi-drone one, using the Probabilistic Ensembles with Trajectory Sampling (PETS) algorithm to model the unknown stochastic system dynamics and uncertainty. We use the Multi-Agent Reinforcement Learning (MARL) framework via a centralized controller in a leader-follower configuration. The agents utilize the approximated transition function in a Model Predictive Controller (MPC) configured to maximize the reward function for waypoint navigation, while a position-based formation controller ensures stable flights of these physically linked UAVs. We also developed an Unreal Engine (UE) simulation connected to an offboard planner and controller via a Robot Operating System (ROS) framework that is transferable to real robots. This work achieves stable waypoint navigation in a stochastic environment with a sample efficiency following that seen in single UAV work. This work has been funded by the National Science Foundation (NSF) under Award No. 2046770.

Description

Keywords

Unmanned aerial vehicles, Unreal Engine, Model-based deep reinforcement learning, Cooperative multi-agent systems, Motion planning, Payload transportation

Citation

Collections