Formal definition of the MARS method for quantifying the unique target class discoveries of selected machine classifiers
dc.contributor.author | Restrepo, Felipe | en |
dc.contributor.author | Mali, Namrata | en |
dc.contributor.author | Abrahams, Alan | en |
dc.contributor.author | Ractham, Peter | en |
dc.date.accessioned | 2023-06-06T16:59:23Z | en |
dc.date.available | 2023-06-06T16:59:23Z | en |
dc.date.issued | 2022-07 | en |
dc.date.updated | 2023-06-06T14:34:41Z | en |
dc.description.abstract | Conventional binary classification performance metrics evaluate either general measures (accuracy, F score) or specific aspects (precision, recall) of a model's classifying ability. As such, these metrics, derived from the model's confusion matrix, provide crucial insight regarding classifier-data interactions. However, modern- day computational capabilities have allowed for the creation of increasingly complex models that share nearly identical classification performance. While traditional performance metrics remain as essential indicators of a classifier's individual capabilities, their ability to differentiate between models is limited. In this paper, we present the methodology for MARS (Method for Assessing Relative Sensitivity/ Specificity) ShineThrough and MARS Occlusion scores, two novel binary classification performance metrics, designed to quantify the distinctiveness of a classifier's predictive successes and failures, relative to alternative classifiers. Being able to quantitatively express classifier uniqueness adds a novel classifier-classifier layer to the process of model evaluation and could improve ensemble model-selection decision making. By calculating both conventional performance measures, and proposed MARS metrics for a simple classifier prediction dataset, we demonstrate that the proposed metrics' informational strengths synergize well with those of traditional metrics, delivering insight complementary to that of conventional metrics. | en |
dc.description.version | Published version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.12688/f1000research.110567.2 | en |
dc.identifier.eissn | 2046-1402 | en |
dc.identifier.issn | 2046-1402 | en |
dc.identifier.orcid | Abrahams, Alan [0000-0002-4884-3192] | en |
dc.identifier.other | PMC9350436 | en |
dc.identifier.pmid | 35967970 | en |
dc.identifier.uri | http://hdl.handle.net/10919/115348 | en |
dc.identifier.volume | 11 | en |
dc.language.iso | en | en |
dc.publisher | F1000 Research | en |
dc.relation.uri | https://www.ncbi.nlm.nih.gov/pubmed/35967970 | en |
dc.rights | Creative Commons Attribution 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | Binary classification | en |
dc.subject | Classifier comparative uniqueness | en |
dc.subject | Classifier performance evaluation | en |
dc.subject | Classifier selection optimization | en |
dc.subject | Machine learning | en |
dc.subject.mesh | Sensitivity and Specificity | en |
dc.title | Formal definition of the MARS method for quantifying the unique target class discoveries of selected machine classifiers | en |
dc.title.serial | F1000Research | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
dc.type.other | Research Support, Non-U.S. Gov't | en |
dc.type.other | methods-article | en |
dc.type.other | Journal Article | en |
dcterms.dateAccepted | 2022-06-16 | en |
pubs.organisational-group | /Virginia Tech | en |
pubs.organisational-group | /Virginia Tech/Engineering | en |
pubs.organisational-group | /Virginia Tech/Engineering/Industrial and Systems Engineering | en |
pubs.organisational-group | /Virginia Tech/Pamplin College of Business | en |
pubs.organisational-group | /Virginia Tech/Pamplin College of Business/Business Information Technology | en |
pubs.organisational-group | /Virginia Tech/All T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Pamplin College of Business/PCOB T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Report test | en |
pubs.organisational-group | /Virginia Tech/Graduate students | en |
pubs.organisational-group | /Virginia Tech/Graduate students/Masters students | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Formal definition of the MARS method for quantifying the unique target class discoveries of selected machine classifiers.pdf
- Size:
- 679.56 KB
- Format:
- Adobe Portable Document Format
- Description:
- Published version