Projecting Planning-Related Climate Impact Drivers for Appalachian Public Health Support

TR Number

Date

2024-07-10

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Climate change is impacting the intensity, duration, and frequency of climatic events. With climate change comes a multitude of adverse conditions, including extreme heat events, changes in disease patterns, and increased likelihood and frequency of natural disasters, including in places previously not exposed to such conditions. Human health has foundations in the environment; therefore, these adverse climatic conditions are directly linked to human health. Rural communities in Appalachia are likely to experience negative consequences of climate change more severely due to unique geomorphology and sociopolitical realities of the region. Non-governmental organizations (NGOs) throughout the Appalachian region are currently working to build resilience and prepare for potential adverse effects from climate change. To aid in this process, projections of future climate scenarios are needed to understand possible situations and adequately prepare. In partnership with Ohio University and West Virginia University, this study aims to characterize potential future climatic scenarios from publicly-available global climate models (GCMs) and prepare information to share with Appalachian communities. Climate model information for this analysis was obtained from NASA's Coupled Model Intercomparison Project (CMIP6). All code for data processing and analysis was prepared using the open-source R programming language to support reproducibility. To confirm that models can accurately simulate Appalachian climatic conditions, CMIP6 hindcast simulations for precipitation and maximum temperature were compared to observed weather records from NOAA. Climate models over and underestimated average precipitation values depending on location, while models consistently underestimated extreme precipitation values, simulated by total five-day precipitation. For temperature, climate models consistently underestimated average and extreme high temperature indicators. For Appalachian region projections, three towns of interest (one for each state involved in the study: Virginia, West Virginia, and Ohio) were selected based on current community resilience efforts. In these locations, mid-century (2040 – 2064) and end-of-century (2075 – 2099) projections for precipitation and temperature were summarized under a low emissions scenario and a high emissions scenario. Increases in precipitation and temperature were observed under average and extreme scenarios; these increases were noticeably more extreme under higher emissions scenarios. These trends are consistent with other studies and climate science consensus. When compared to hindcast values, observed average precipitation values were overestimated and underestimated, while observed extreme precipitation indices, average temperatures, and heat wave indices were underestimated by GCMs. Context with observed data is important to understanding model accuracy for the Appalachian region. GCMs are a useful tool to project potential future climate scenarios at specific locations in the Appalachian region, though model data is best used to communicate general trends rather than as inputs for other physical models.

Description

Keywords

Appalachia, Climate Change, Climate Impact Driver, Extreme Weather Events, Global Climate Models, Resilience

Citation

Collections