EMI Suppression and Performance Enhancement for Truly Differential Gate Drivers

TR Number

Date

2023-06-30

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

The increasing market demand for wideband gap (WBG) power switches has led to heightened competition to increase converter power density, switching frequencies, and reduce form factor, among other factors. However, this technology has also brought about an increase in encounters with electromagnetic interference (EMI), posing significant challenges. Nevertheless, the maturation of power switches has been accompanied by an improvement in gate drive technology aimed at resolving EMI challenges, albeit at a higher component and cost expense. This thesis aims to design, analyze, and implement a recent innovative differential gate driver for a 1.2 kV SiC MOSFET full bridge module. The purpose of this design is to mitigate EMI, improve performance, and reduce the number of filtering elements that are typically required. The investigation into the impact of EMI on electrical systems involves exploring factors such as testing equipment, power supplies, and gate drive layout. Based on these considerations, system and sub-system level analyses are conducted to derive practical design recommendations for implementing the differential gate driver. Three gate drive PCBs are designed and evaluated through extensive double pulse tests (DPTs). Furthermore, continuous switching of the driver presents its own set of challenges that are not apparent during the DPTs, requiring further exploration of low-cost solutions. Finally, a comparison between custom and discrete module solutions employing 1.2 kV SiC MOSFETs is conducted, highlighting the advantages and disadvantages of each approach. The solutions proposed in this work are intended to be extended to other gate drive ICs, with the goal of providing valuable insights and guidelines for EMI suppression and gate driver performance enhancement.

Description

Keywords

Differential gate driver, SiC MOSFET, EMI, High-Frequency

Citation

Collections