Trustworthy Soft Sensing in Water Supply Systems using Deep Learning
dc.contributor.author | Sreng, Chhayly | en |
dc.contributor.committeechair | Batarseh, Feras A. | en |
dc.contributor.committeechair | Ha, Dong S. | en |
dc.contributor.committeemember | Ha, Sook Shin | en |
dc.contributor.department | Electrical and Computer Engineering | en |
dc.date.accessioned | 2024-05-23T08:00:28Z | en |
dc.date.available | 2024-05-23T08:00:28Z | en |
dc.date.issued | 2024-05-22 | en |
dc.description.abstract | In many industrial and scientific applications, accurate sensor measurements are crucial. Instruments such as nitrate sensors are vulnerable to environmental conditions, calibration drift, high maintenance costs, and degrading. Researchers have turned to advanced computational methods, including mathematical modeling, statistical analysis, and machine learning, to overcome these limitations. Deep learning techniques have shown promise in outperforming traditional methods in many applications by achieving higher accuracy, but they are often criticized as 'black-box' models due to their lack of transparency. This thesis presents a framework for deep learning-based soft sensors that can quantify the robustness of soft sensors by estimating predictive uncertainty and evaluating performance across various scenarios. The framework facilitates comparisons between hard and soft sensors. To validate the framework, I conduct experiments using data generated by AI and Cyber for Water and Ag (ACWA), a cyber-physical system water-controlled environment testbed. Afterwards, the framework is tested on real-world environment data from Alexandria Renew Enterprise (AlexRenew), establishing its applicability and effectiveness in practical settings. | en |
dc.description.abstractgeneral | Sensors are essential in various industrial systems and offer numerous advantages. Essential to measurement science and technology, it allows reliable high-resolution low-cost measurement and impacts areas such as environmental monitoring, medical applications and security. The importance of sensors extends to Internet of Things (IoT) and large-scale data analytics fields. In these areas, sensors are vital to the generation of data that is used in industries such as health care, transportation and surveillance. Big Data analytics processes this data for a variety of purposes, including health management and disease prediction, demonstrating the growing importance of sensors in data-driven decision making. In many industrial and scientific applications, precision and trustworthiness in measurements are crucial for informed decision-making and maintaining high-quality processes. Instruments such as nitrate sensors are particularly susceptible to environmental conditions, calibration drift, high maintenance costs, and a tendency to become less reliable over time due to aging. The lifespan of these instruments can be as short as two weeks, posing significant challenges. To overcome these limitations, researchers have turned to advanced computational methods, including mathematical modeling, statistical analysis, and machine learning. Traditional methods have had some success, but they often struggle to fully capture the complex dynamics of natural environments. This has led to increased interest in more sophisticated approaches, such as deep learning techniques. Deep learning-based soft sensors have shown promise in outperforming traditional methods in many applications by achieving higher accuracy. However, they are often criticized as "black-box" models due to their lack of transparency. This raises questions about their reliability and trustworthiness, making it critical to assess these aspects. This thesis presents a comprehensive framework for deep learning-based soft sensors. The framework will quantify the robustness of soft sensors by estimating predictive uncertainty and evaluating performance across a range of contextual scenarios, such as weather conditions, flood events, and water parameters. These evaluations will help define the trustworthiness of the soft sensor and facilitate comparisons between hard and soft sensors. To validate the framework, we will conduct experiments using data generated by ACWA, a cyber-physical system water-controlled environment testbed we developed. This will provide a controlled environment to test and refine our framework. Subsequently, we will test the framework on real-world environment data from AlexRenew. This will further establish its applicability and effectiveness in practical settings, providing a robust and reliable tool for sensor data analysis and prediction. Ultimately, this work aims to contribute to the broader field of sensor technology, enhancing our ability to make informed decisions based on reliable and accurate sensor data. | en |
dc.description.degree | Master of Science | en |
dc.format.medium | ETD | en |
dc.identifier.other | vt_gsexam:40862 | en |
dc.identifier.uri | https://hdl.handle.net/10919/119056 | en |
dc.language.iso | en | en |
dc.publisher | Virginia Tech | en |
dc.rights | Creative Commons Attribution 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | Soft Sensor | en |
dc.subject | Water Supply System | en |
dc.subject | Data-Driven | en |
dc.subject | Testbed | en |
dc.subject | Trustworthy AI | en |
dc.subject | Nitrate | en |
dc.subject | Context | en |
dc.title | Trustworthy Soft Sensing in Water Supply Systems using Deep Learning | en |
dc.type | Thesis | en |
thesis.degree.discipline | Computer Engineering | en |
thesis.degree.grantor | Virginia Polytechnic Institute and State University | en |
thesis.degree.level | masters | en |
thesis.degree.name | Master of Science | en |
Files
Original bundle
1 - 1 of 1