Mapping the Interfacial Electronic Structure of Strain-Engineered Epitaxial Germanium Grown on InxAl1–xAs Stressors
dc.contributor.author | Clavel, Michael B. | en |
dc.contributor.author | Liu, Jheng-Sin | en |
dc.contributor.author | Bodnar, Robert J. | en |
dc.contributor.author | Hudait, Mantu K. | en |
dc.date.accessioned | 2022-02-22T16:46:24Z | en |
dc.date.available | 2022-02-22T16:46:24Z | en |
dc.date.issued | 2022-02-08 | en |
dc.date.updated | 2022-02-22T16:46:20Z | en |
dc.description.abstract | The indirect nature of silicon (Si) emission currently limits the monolithic integration of photonic circuitry with Si electronics. Approaches to circumvent the optical shortcomings of Si include band structure engineering via alloying (e.g., SixGe1–x–ySny) and/or strain engineering of group IV materials (e.g., Ge). Although these methods enhance emission, many are incapable of realizing practical lasing structures because of poor optical and electrical confinement. Here, we report on strong optoelectronic confinement in a highly tensile-strained (ε) Ge/In0.26Al0.74As heterostructure as determined by X-ray photoemission spectroscopy (XPS). To this end, an ultrathin (∼10 nm) ε-Ge epilayer was directly integrated onto the In0.26Al0.74As stressor using an in situ, dual-chamber molecular beam epitaxy approach. Combining high-resolution X-ray diffraction and Raman spectroscopy, a strain state as high as ε ∼ 1.75% was demonstrated. Moreover, high-resolution transmission electron microscopy confirmed the highly ordered, pseudomorphic nature of the as-grown ε-Ge/In0.26Al0.74As heterostructure. The heterointerfacial electronic structure was likewise probed via XPS, revealing conduction- and valence band offsets (ΔEC and ΔEV) of 1.25 ± 0.1 and 0.56 ± 0.1 eV, respectively. Finally, we compare our empirical results with previously published first-principles calculations investigating the impact of heterointerfacial stoichiometry on the ε-Ge/InxAl1–xAs energy band offset, demonstrating excellent agreement between experimental and theoretical results under an As0.5Ge0.5 interface stoichiometry exhibiting up to two monolayers of heterointerfacial As–Ge diffusion. Taken together, these findings reveal a new route toward the realization of on-Si photonics. | en |
dc.description.version | Accepted version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier | acsomega.1c06203 (Article number) | en |
dc.identifier.doi | https://doi.org/10.1021/acsomega.1c06203 | en |
dc.identifier.eissn | 2470-1343 | en |
dc.identifier.issn | 2470-1343 | en |
dc.identifier.orcid | Hudait, Mantu [0000-0002-9789-3081] | en |
dc.identifier.uri | http://hdl.handle.net/10919/108816 | en |
dc.language.iso | en | en |
dc.publisher | American Chemical Society | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | 0904 Chemical Engineering | en |
dc.subject | 0912 Materials Engineering | en |
dc.title | Mapping the Interfacial Electronic Structure of Strain-Engineered Epitaxial Germanium Grown on InxAl1–xAs Stressors | en |
dc.title.serial | ACS Omega | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
pubs.organisational-group | /Virginia Tech | en |
pubs.organisational-group | /Virginia Tech/Engineering | en |
pubs.organisational-group | /Virginia Tech/Engineering/Electrical and Computer Engineering | en |
pubs.organisational-group | /Virginia Tech/All T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Engineering/COE T&R Faculty | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- ao-2021-06203m.R1_Proof_hi.pdf
- Size:
- 6.52 MB
- Format:
- Adobe Portable Document Format
- Description:
- Accepted version