Enhanced Navigation Using Aerial Magnetic Field Mapping

TR Number
Date
2024-01-23
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

This thesis applies the methods of previous work in aerial magnetic field mapping and use in state estimation to the Virginia Tech Swing Space motion capture indoor facility. State estimation with magnetic field data acquired from a quadrotor is comparatively performed with Gaussian process regression, a multiplicative extended Kalman filter, and a particle filter to estimate the position and attitude of an uncrewed aircraft system (UAS) at any point in the motion capture testing environment. Motion capture truth data is used in the analysis. The first experimental method utilized in this thesis is Gaussian process regression. This machine learning tool allows us to create three-dimensional magnetic field maps of the indoor test space by collecting magnetic field vector data with a small UAS. Here, the maps illustrate the 3D magnetic field strengths and directions in the Virginia Tech Swing Space motion capture lab. Also, the magnetic field spatial variation of the test space is analyzed, yielding higher magnetic field gradient at lower heights above the ground. Next, the multiplicative extended Kalman filter is used with our Gaussian process regression magnetic field maps to estimate the attitude of the quadrotor. The results indicate an increase in attitude estimation accuracy when magnetic field mapping is utilized compared to when it is not. Here, results show that the addition of aerial magnetic field mapping leads to enhanced attitude estimation. Finally, the particle filter is utilized with support from our magnetic field maps to estimate the position of a small quadrotor UAS. The magnetic field maps allow us to obtain UAS position vectors by tracking UAS movement through magnetic field data. The particle filter gives three-dimensional position estimates to within 0.2 meters for five out of our eight test flights. The root mean square error is within 0.1 meters for each test flight. The effects of magnetic field spatial variation are also analyzed. The accuracy of position estimation is higher for two out the four flights in the maximum magnetic gradient area, while the accuracy is similar in both minimum and maximum gradient regions for the remaining two flights. There is evidence to support an increase in accuracy for high magnetic variation areas, but further work is needed to confirm utility for practical applications.

Description
Keywords
Gaussian Process Regression, Position Estimation
Citation
Collections