Complexation of metal salts with phosphorus-containing poly(arylene ether)s

dc.contributor.authorBonaplata Revilla, Elenaen
dc.contributor.committeechairMcGrath, James E.en
dc.contributor.committeememberBrewer, Karen J.en
dc.contributor.committeememberMarand, Hervé L.en
dc.contributor.departmentChemistryen
dc.date.accessioned2014-03-14T21:40:42Zen
dc.date.adate2009-07-21en
dc.date.available2014-03-14T21:40:42Zen
dc.date.issued1994-05-01en
dc.date.rdate2009-07-21en
dc.date.sdate2009-07-21en
dc.description.abstractPoly(arylene ether phosphine oxide)s (PEPO) are a recently identified subset of an important macromolecular series which includes industrially important high performance thermoplastics, such as the polysulfones, e.g. UDEL@ and polyether ketones, e.g. PEEK@, PEKK@, etc. The PEPO materials show an elevated glass transition temperature, high thermal and oxidative stability, improved solubility, and increased flame resistance. It has been demonstrated that a variety of metal salts including metals such as iron, zinc, cobalt, and copper, can be complexed at a molecular level with the phosphoryl group in films of these polymers producing novel transparent metal/polymer "composites". A procedure for obtaining homogeneous films from solutions of the metal halide complexed polymers has been developed. FTIR experiments as well as Tl phosphorus (31 P) NMR measurements were conducted to demonstrate the existance of metal complexation in the solid state. The effect of the chemical composition of the chain, type of metal salt, molar concentration of the metal salt, and heating cycle were investigated and found to influence properties of the films such as solubility, glass transition temperature, thermal stability, and storage mexiulus. Additionally, linear poly(arylene ether phosphine oxide)s were reduced to different extents to the corresponding phosphine containing polymers. Properties such as intrinsic One of these phosphine polymers was subsequently used in the generation of a rhodium catalyst for the hydroformylation of octene-l. The utilization of polymer-supported catalysts has important advantages such as catalyst recovery and the ease of separation of the product. The catalyst activity of the polymeric rhodium complex was studied as a function of reaction time as well as ligand to rhodium ratio. For a phosphorus/rhodium ratio of two these heterogeneous catalysts suffer in tenns of reaction rate in relation to their homogeneous counterparts. However, at phosphorus/rhodium ratios of approximately eight the reaction is almost quantitative after three hours, and the selectivity is greatly improved over that of monomeric homogeneous catalysts for the same P/Rh ratio.en
dc.description.degreeMaster of Scienceen
dc.format.extentxiv, 139 leavesen
dc.format.mediumBTDen
dc.format.mimetypeapplication/pdfen
dc.identifier.otheretd-07212009-040433en
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-07212009-040433/en
dc.identifier.urihttp://hdl.handle.net/10919/43797en
dc.language.isoenen
dc.publisherVirginia Techen
dc.relation.haspartLD5655.V855_1994.R485.pdfen
dc.relation.isformatofOCLC# 31306717en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.lccLD5655.V855 1994.R485en
dc.subject.lcshEthers -- Synthesisen
dc.subject.lcshOrganometallic polymers -- Synthesisen
dc.subject.lcshPolycyclic aromatic hydrocarbons -- Synthesisen
dc.subject.lcshSaltsen
dc.subject.lcshThermoplastics -- Synthesisen
dc.titleComplexation of metal salts with phosphorus-containing poly(arylene ether)sen
dc.typeThesisen
dc.type.dcmitypeTexten
thesis.degree.disciplineChemistryen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
LD5655.V855_1994.R485.pdf
Size:
13.98 MB
Format:
Adobe Portable Document Format

Collections