Abrasive Blasting with Post-Process and In-Situ Characterization

dc.contributor.authorMills, Robert Jeffreyen
dc.contributor.committeechairPickrell, Gary R.en
dc.contributor.committeememberHoma, Daniel S.en
dc.contributor.committeememberStaley, Thomas W.en
dc.contributor.committeememberDruschitz, Alan P.en
dc.contributor.departmentMaterials Science and Engineeringen
dc.date.accessioned2014-07-26T08:00:34Zen
dc.date.available2014-07-26T08:00:34Zen
dc.date.issued2014-07-25en
dc.description.abstractAbrasive blasting is a common process for cleaning or roughening the surface of a material prior to the application of a coating. Although the process has been in practice for over 100 years, the lack of a comprehensive understanding of the complex interactions that exist with the process can still yield an inferior surface quality. Subsequently, parts can be rejected at one of many stages of the manufacturing process and/or fail unexpectedly upon deployment. The objective of this work is to evaluate the effect of selected input parameters on the characteristics of the blasted surface characteristics so that a more useful control strategy can be implemented. To characterize surface roughness, mechanical profilometry was used to collect average roughness parameter, Ra. Decreasing blast distance from 6” to 4” gave ΔRa = +0.22 µm and from 8” to 6” gave ΔRa = +0.22 µm. Increasing blast pressure from 42 psi to 60 psi decreased the Ra by 0.33 µm. Media pulsation reduced Ra by 0.56 µm and the use of new media reduced Ra by 0.47 µm. Although blasting under the same conditions and operator on different days led to ΔRa due to shorter blast times, there was no statistically significant variance in Ra attributed to blasting on different days. Conversely, a ΔRa = +0.46 µm was observed upon blasting samples with different cabinets. No significant ΔRa was found when switching between straight and Venturi nozzles or when using different operators. Furthermore, the feasibility of fiber optic sensing technologies was investigated as potential tools to provide real time feedback to the blast machine operator in terms of substrate temperature. Decreasing the blast distance from 6” to 4” led to ΔT = +9.2 °C, while decreasing the blast angle to 45° gave ΔT= -11.6 °C for 304 stainless steel substrates. Furthermore, increasing the blast pressure from 40 psi to 50 psi gave ΔT= +15.3 °C and changing from 50 psi to 60 psi gave ΔT= +9.9 °C. The blast distance change from 8” to 6” resulted in ΔT = +9.8 °C in thin stainless steel substrate temperature. The effects of substrate thickness or shape were evaluated, giving ΔT= +7.4 °C at 8” distance, ΔT= +20.2 °C at 60 psi pressure, and ΔT= -15.2 °C at 45° blasting when comparing thin stainless steel against 304 stainless steel (thick) temperatures. No significant ΔT in means was found when going from 6” to 8” distance on 304 stainless steel, 40 psi and 60 psi blasting of thin SS, as well as angled and perpendicular blasting of thin SS. Comparing thick 304 and thin stainless steel substrates at a 6” blast distance gave no significant ΔT.en
dc.description.degreeMaster of Scienceen
dc.format.mediumETDen
dc.identifier.othervt_gsexam:3391en
dc.identifier.urihttp://hdl.handle.net/10919/49680en
dc.publisherVirginia Techen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectabrasive blastingen
dc.subjectmediaen
dc.subjectsubstrateen
dc.subjectprofilometryen
dc.subjectroughnessen
dc.subjectTemperatureen
dc.subjectoptical fibersen
dc.titleAbrasive Blasting with Post-Process and In-Situ Characterizationen
dc.typeThesisen
thesis.degree.disciplineMaterials Science and Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Mills_RJ_T_2014.pdf
Size:
3.67 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Mills_RJ_T_2014_support_1.pdf
Size:
2.29 MB
Format:
Adobe Portable Document Format
Description:
Supporting documents

Collections