Analysis and Improvement of the bRAPID Algorithm and its Implementation
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
This thesis presents a detailed analysis of the bRAPID (burnup for RAPID – Real Time Analysis for Particle transport and In-situ Detection) code system, and the implementation and validation of two new algorithms for improved burnup simulation. bRAPID is a fuel burnup algorithm capable of performing full core 3D assembly-wise burnup calculations in real time, through its use of the RAPID Fission Matrix methodology. A study into the effect of time step resolution on isotopic composition in Monte Carlo burnup calculations is presented to provide recommendations for time step scheme development in bRAPID. Two novel algorithms are implemented into bRAPID, which address: i) the generation of time-dependent correction factors for the fission density distribution in boundary nuclear fuel assemblies within a reactor core; ii) the calculation of pin-wise burnup distributions and isotopic concentrations.
Time step resolution analysis shows that a variable time step scheme, developed to accurately characterize important isotope evolution, can be used to optimize burnup calculations and minimize computation time. The two new algorithms have been benchmarked against the Monte Carlo code system Serpent. Results indicate that the time-dependent boundary correction algorithm improves fission density distribution calculations by including a more detailed representation of boundary physics. The pin-wise burnup algorithm expands bRAPID capabilities to provide material composition data at the pin level, with accuracy comparable to the reference calculation. In addition, wall-clock time analyses show that burnup calculations performed using bRAPID with these novel algorithms require a fraction of the time of Serpent.