Four-Dimensional Passive Velocity Tomography of a Longwall Panel

dc.contributor.authorLuxbacher, Kramer Davisen
dc.contributor.committeechairWestman, Erik C.en
dc.contributor.committeememberNovak, Thomasen
dc.contributor.committeememberKarfakis, Mario G.en
dc.contributor.departmentMining and Minerals Engineeringen
dc.date.accessioned2014-03-14T20:50:30Zen
dc.date.adate2006-01-13en
dc.date.available2014-03-14T20:50:30Zen
dc.date.issued2005-12-12en
dc.date.rdate2006-01-13en
dc.date.sdate2005-12-20en
dc.description.abstractVelocity tomography is a noninvasive technology that can be used to determine rock mass response to ore removal. Velocity tomography is accomplished by propagating seismic waves through a rock mass to measure velocity distribution of the rock mass. Tomograms are created by mapping this velocity distribution. From the velocity distribution relative stress in the rock mass can be inferred, and this velocity distribution can be mapped at specific time intervals. Velocity tomography is an appropriate technology for the study of rockbursts. Rockbursts are events that occur in underground mines as a result of excessive strain energy being stored in a rock mass and sometimes culminating in violent failure of the rock. Rockbursts often involve inundation of broken rock into open areas of the mine. They pose a considerable risk to miners and can hinder production substantially. The rock mass under investigation in this research is the strata surrounding an underground coal mine in the western United States, utilizing longwall mining. The mine has experienced rockbursts. Seismic data were collected over a nineteen day period, from July 20th, 1997 to August 7th, 1997, although only eighteen days were recorded. Instrumentation consistsed of sixteen receivers, mounted on the surface, approximately 1,200 feet above the longwall panel of interest. The system recorded and located microseismic events, and utilized them as seismic sources. The data were analyzed and input into a commercial program that uses an algorithm known as simultaneous iterative reconstruction technique to generate tomograms. Eighteen tomograms were generated, one for each day of the study. The tomograms consistently display a high velocity area along the longwall tailgate that redistributes with face advance. Numerical modeling and mine experience confirm that the longwall tailgate is subject to high stress. Additionally, microseismic events are correlated with the velocity tomograms. Velocity tomography proves to be an effective method for the study of stress redistribution and rockburst phenomena at underground longwall coal mines, because it generates images that are consistent with prior information about the stress state at the mine and with numerical models of the stress in the mine.en
dc.description.degreeMaster of Scienceen
dc.identifier.otheretd-12202005-153010en
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-12202005-153010/en
dc.identifier.urihttp://hdl.handle.net/10919/36332en
dc.publisherVirginia Techen
dc.relation.haspartAppendix_H.wmven
dc.relation.haspartLuxbacher_Thesis.pdfen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectlongwall miningen
dc.subjectstress redistributionen
dc.subjectvelocity tomographyen
dc.titleFour-Dimensional Passive Velocity Tomography of a Longwall Panelen
dc.typeThesisen
thesis.degree.disciplineMining and Minerals Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 2 of 2
Name:
Appendix_H.wmv
Size:
1.24 MB
Format:
Unknown data format
Loading...
Thumbnail Image
Name:
Luxbacher_Thesis.pdf
Size:
48.82 MB
Format:
Adobe Portable Document Format

Collections