Beurling-Lax Representations of Shift-Invariant Spaces, Zero-Pole Data Interpolation, and Dichotomous Transfer Function Realizations: Half-Plane/Continuous-Time Versions
dc.contributor.author | Amaya, Austin J. | en |
dc.contributor.committeechair | Ball, Joseph A. | en |
dc.contributor.committeemember | Hagedorn, George A. | en |
dc.contributor.committeemember | Klaus, Martin | en |
dc.contributor.committeemember | Renardy, Michael J. | en |
dc.contributor.department | Mathematics | en |
dc.date.accessioned | 2014-03-14T20:11:50Z | en |
dc.date.adate | 2012-05-30 | en |
dc.date.available | 2014-03-14T20:11:50Z | en |
dc.date.issued | 2012-04-26 | en |
dc.date.rdate | 2012-05-30 | en |
dc.date.sdate | 2012-05-10 | en |
dc.description.abstract | Given a full-range simply-invariant shift-invariant subspace <i>M</i> of the vector-valued <i>L<sup>2</sup></i> space on the unit circle, the classical Beurling-Lax-Halmos (BLH) theorem obtains a unitary operator-valued function <i>W</i> so that <i>M</i> may be represented as the image of of the Hardy space <i>H<sup>2</sup></i> on the disc under multiplication by <i>W</i>. The work of Ball-Helton later extended this result to find a single function representing a so-called dual shift-invariant pair of subspaces <i>(M,M<sup>Ã </sup>)</i> which together form a direct-sum decomposition of <i>L<sup>2</sup></i>. In the case where the pair <i>(M,M<sup>Ã </sup>)</i> are finite-dimensional perturbations of the Hardy space <i>H<sup>2</sup></i> and its orthogonal complement, Ball-Gohberg-Rodman obtained a transfer function realization for the representing function <i>W</i>; this realization was parameterized in terms of zero-pole data computed from the pair <i>(M,M<sup>Ã </sup>)</i>. Later work by Ball-Raney extended this analysis to the case of nonrational functions <i>W</i> where the zero-pole data is taken in an infinite-dimensional operator theoretic sense. The current work obtains analogues of these various results for arbitrary dual shift-invariant pairs <i>(M,M<sup>Ã </sup>)</i> of the <i>L<sup>2</sup></i> spaces on the real line; here, shift-invariance refers to invariance under the translation group. These new results rely on recent advances in the understanding of continuous-time infinite-dimensional input-state-output linear systems which have been codified in the book by Staffans. | en |
dc.description.degree | Ph. D. | en |
dc.identifier.other | etd-05102012-184739 | en |
dc.identifier.sourceurl | http://scholar.lib.vt.edu/theses/available/etd-05102012-184739/ | en |
dc.identifier.uri | http://hdl.handle.net/10919/27636 | en |
dc.publisher | Virginia Tech | en |
dc.relation.haspart | Amaya_AJ_D_2012.pdf | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | reproducing kernel Hilbert spaces | en |
dc.subject | Hardy spaces over left/right half plane | en |
dc.subject | admissible Sylvester data set | en |
dc.subject | operator Sylvester equation | en |
dc.subject | infinite dimensional zero-pole data | en |
dc.subject | continuous shift semigroups | en |
dc.subject | Ltwo well-posed linear systems | en |
dc.subject | continuous-time linear systems | en |
dc.title | Beurling-Lax Representations of Shift-Invariant Spaces, Zero-Pole Data Interpolation, and Dichotomous Transfer Function Realizations: Half-Plane/Continuous-Time Versions | en |
dc.type | Dissertation | en |
thesis.degree.discipline | Mathematics | en |
thesis.degree.grantor | Virginia Polytechnic Institute and State University | en |
thesis.degree.level | doctoral | en |
thesis.degree.name | Ph. D. | en |
Files
Original bundle
1 - 1 of 1