VTechWorks staff will be away for the Thanksgiving holiday beginning at noon on Wednesday, November 27, through Friday, November 29. We will resume normal operations on Monday, December 2. Thank you for your patience.
 

Beurling-Lax Representations of Shift-Invariant Spaces, Zero-Pole Data Interpolation, and Dichotomous Transfer Function Realizations: Half-Plane/Continuous-Time Versions

dc.contributor.authorAmaya, Austin J.en
dc.contributor.committeechairBall, Joseph A.en
dc.contributor.committeememberHagedorn, George A.en
dc.contributor.committeememberKlaus, Martinen
dc.contributor.committeememberRenardy, Michael J.en
dc.contributor.departmentMathematicsen
dc.date.accessioned2014-03-14T20:11:50Zen
dc.date.adate2012-05-30en
dc.date.available2014-03-14T20:11:50Zen
dc.date.issued2012-04-26en
dc.date.rdate2012-05-30en
dc.date.sdate2012-05-10en
dc.description.abstractGiven a full-range simply-invariant shift-invariant subspace <i>M</i> of the vector-valued <i>L<sup>2</sup></i> space on the unit circle, the classical Beurling-Lax-Halmos (BLH) theorem obtains a unitary operator-valued function <i>W</i> so that <i>M</i> may be represented as the image of of the Hardy space <i>H<sup>2</sup></i> on the disc under multiplication by <i>W</i>. The work of Ball-Helton later extended this result to find a single function representing a so-called dual shift-invariant pair of subspaces <i>(M,M<sup>Ã </sup>)</i> which together form a direct-sum decomposition of <i>L<sup>2</sup></i>. In the case where the pair <i>(M,M<sup>Ã </sup>)</i> are finite-dimensional perturbations of the Hardy space <i>H<sup>2</sup></i> and its orthogonal complement, Ball-Gohberg-Rodman obtained a transfer function realization for the representing function <i>W</i>; this realization was parameterized in terms of zero-pole data computed from the pair <i>(M,M<sup>Ã </sup>)</i>. Later work by Ball-Raney extended this analysis to the case of nonrational functions <i>W</i> where the zero-pole data is taken in an infinite-dimensional operator theoretic sense. The current work obtains analogues of these various results for arbitrary dual shift-invariant pairs <i>(M,M<sup>Ã </sup>)</i> of the <i>L<sup>2</sup></i> spaces on the real line; here, shift-invariance refers to invariance under the translation group. These new results rely on recent advances in the understanding of continuous-time infinite-dimensional input-state-output linear systems which have been codified in the book by Staffans.en
dc.description.degreePh. D.en
dc.identifier.otheretd-05102012-184739en
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-05102012-184739/en
dc.identifier.urihttp://hdl.handle.net/10919/27636en
dc.publisherVirginia Techen
dc.relation.haspartAmaya_AJ_D_2012.pdfen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectreproducing kernel Hilbert spacesen
dc.subjectHardy spaces over left/right half planeen
dc.subjectadmissible Sylvester data seten
dc.subjectoperator Sylvester equationen
dc.subjectinfinite dimensional zero-pole dataen
dc.subjectcontinuous shift semigroupsen
dc.subjectLtwo well-posed linear systemsen
dc.subjectcontinuous-time linear systemsen
dc.titleBeurling-Lax Representations of Shift-Invariant Spaces, Zero-Pole Data Interpolation, and Dichotomous Transfer Function Realizations: Half-Plane/Continuous-Time Versionsen
dc.typeDissertationen
thesis.degree.disciplineMathematicsen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.leveldoctoralen
thesis.degree.namePh. D.en

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Amaya_AJ_D_2012.pdf
Size:
565.93 KB
Format:
Adobe Portable Document Format