VTechWorks staff will be away for the Thanksgiving holiday beginning at noon on Wednesday, November 27, through Friday, November 29. We will resume normal operations on Monday, December 2. Thank you for your patience.
 

Random Linear Network Coding Enabled Routing Protocol in UAV Swarm Networks: Development, Emulation, and Optimization

TR Number

Date

2021-12-10

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

The development of Unmanned Aerial Vehicles (UAVs) and fifth-generation (5G) wireless technology provides more possibilities for wireless networks. The application of UAVs is gradually evolving from individual UAVs performing tasks to UAV swarm performing tasks in concert. A UAV swarm network is when many drones work cooperatively in a swarm mode to achieve a particular goal. Due to the UAV swarm's easy deployment, self-organization, self-management, and high flexibility, it can provide robust and efficient wireless communications in some unique scenarios, such as emergency communications, hotspot region coverage, sensor networks, and vehicular networks. Therefore, UAV networks have attracted more and more attention from commercial and military; however, many problems need to be resolved before UAV cellular communications become a reality. One of the most challenging core components is the routing protocol design in the UAV swarm network. Due to the high mobility of UAVs, the position of each UAV changes dynamically, so problems such as high latency, high packet loss rate, and even loss of connection arise when UAVs are far apart. These problems dramatically reduce the transmission rate and data integrity for traditional routing protocols based on path discovery. This thesis focuses on developing, emulating, and optimizing a flooding-based routing protocol for UAV swarm using Random Linear Network Coding (RLNC) to improve the latency and bit rate and solve the packet loss problem without routing information and network topology. RLNC can reduce the number of packets demand in some hops. Due to this feature of RLNC, when relay transmitter UAVs or the destination receiver UAV receive sufficient encoded packets from any transmitter UAVs, the raw data can be decoded. For those relay transmitter UAVs in the UAV swarm network that already received some encoded packets in previous hops but not enough to decode the raw data, only need to receive the rest of the different encoded packets needed for decoding. Thus, flooding-based routing protocol significantly improves transmission efficiency in the UAV swarm network.

Description

Keywords

UAV swarm networks, routing protocol, random linear network coding, EMANE, emulation, wireless communications

Citation

Collections