Designing RDMA-based efficient Communication for GPU Remoting

TR Number

Date

2023-08-24

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

The use of General Purpose Graphics Processing Units (GPGPUs) has become crucial for accelerating high-performance applications. However, the procurement, setup, and maintenance of GPUs can be costly, and their continuous energy consumption poses additional challenges. Moreover, many applications exhibit suboptimal GPU utilization. To address these concerns, GPU virtualization techniques have been proposed. Among them, GPU Remoting stands out as a promising technology that enables applications to transparently harness the computational capabilities of GPUs remotely. GVirtuS, a GPU Remoting software, facilitates transparent and hypervisor-independent access to GPGPUs within virtual machines. This research focuses on the middleware communication layer implemented in GVirtuS and presents a comprehensive redesign that leverages the power of Remote Direct Memory Access (RDMA) technology. Experimental evaluations, conducted using a matrix multiplication application, demonstrate that the newly proposed protocol achieves approximately 50% reduced execution time for data sizes ranging from 1 to 16MB, and around 12% decreased execution time for sizes ranging from 500 to upto 1GB. These findings highlight the significant performance improvements attained through the redesign of the communication layer in GVirtuS, showcasing its potential for enhancing GPU Remoting efficiency.

Description

Keywords

GPGPU, Virtualization, RDMA, CUDA

Citation

Collections