VTechWorks staff will be away for the Thanksgiving holiday beginning at noon on Wednesday, November 27, through Friday, November 29. We will resume normal operations on Monday, December 2. Thank you for your patience.
 

Adaptive control of a DDMR with a Robotic Arm

TR Number

Date

2021-11-30

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Robotic arms are essential in a variety of industrial processes. However, the dexterous workspace of a robotic arm is limited. This limitation can be overcome by making the robotic arm mobile. Such robots, which comprise a robotic manipulator installed on a wheeled mobile platform, are called mobile robots. A mobile manipulator can attain a position in space which a robotic arm with fixed base may not be able to reach otherwise. To be applicable to a variety of scenarios, these robots need to meet user-defined margins on their trajectory tracking error, irrespective of the payload transported, faults, and failures. In this thesis, we study the dynamics of mobile manipulator comprising both a differential-drive mobile robot (DDMR) and a robotic arm. Thus, we design a model reference adaptive controller (MRAC) for this mobile manipulator to regulate this vehicle and guarantee robustness to uncertainties in the robot's inertial properties such as the mass of the payload transported and friction coefficients.

Description

Keywords

Robots, DDMR, wheeled robots, robotic arm, adaptive control

Citation

Collections