Changing Relationship Between Temperature and Pathogen Growth on Bats with White-nose Syndrome

TR Number

Date

2024-04-22

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Emerging infectious diseases (EID) pose significant threats to biodiversity. Human influence over the environment has increased opportunities for the introduction of novel pathogens to naïve hosts, potentially leading to host extinction. Understanding mechanisms of host persistence is critical for effectively conserving species affected by EIDs. Our study investigated the disease dynamics of white-nose syndrome (WNS), caused by the fungal pathogen Pseudogymnoascus destructans (Pd), in little brown bats (Myotis lucifugus) across a spatiotemporal gradient. We explored the relationship between bat roosting temperatures and Pd growth rates across three phases of pathogen invasion comprising years since WNS has been present at sites: invasion (0-3), established (4-8), and endemic (9+ years). Data used by this study comes from a combination of field-based data collection in New York where WNS has been present the longest and data from a long-running project which includes from other locations in the Northeast and Midwest regions of the United States. Our results reveal a weakening interaction between temperature and fungal growth rates time with WNS progresses. We additionally observed a decrease in early hibernation fungal loads and variation in infection prevalence over time, suggesting the onset of a coevolutionary relationship between bats and Pd. This study highlights the importance of investigating changing disease dynamics when understanding the reasonings for host persistence.

Description

Keywords

disease ecology, disease dynamics, white-nose syndrome, host persistence, little brown bats, Myotis lucifugus

Citation

Collections