Synthesizing Realistic Data for Vision Based Drone-to-Drone Detection

TR Number

Date

2019-07-15

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

In the thesis, we aimed at building a robust UAV(drone) detection algorithm through which, one drone could detect another drone in flight. Though this was a straight forward object detection problem, the biggest challenge we faced for drone detection is the limited amount of drone images for training. To address this issue, we used Generative Adversarial Networks, CycleGAN to be precise, for the generation of realistic looking fake images which were indistinguishable from real data. CycleGAN is a classic example of Image to Image Translation technique, and we this applied in our situation where synthetic images from one domain were transformed into another domain, containing real data. The model, once trained, was capable of generating realistic looking images from synthetic data without the presence of real images. Following this, we employed a state of the art object detection model, YOLO(You Only Look Once), to build a Drone Detection model that was trained on the generated images. Finally, the performance of this model was compared against different datasets in order to evaluate its performance.

Description

Keywords

GANs, Deep learning (Machine learning), Object Detection

Citation

Collections