Evaluating the Role of Atmospheric Stability in Generating Asymmetrical Precipitation During the Landfall of Hurricane Florence (2018)

TR Number



Journal Title

Journal ISSN

Volume Title


Virginia Tech


Hurricane Florence (2018) was unique due to its slow storm motion during landfall, causing convective rainbands to produce high amounts of precipitation along the coast of North Carolina. This study focuses on the relationship between precipitation asymmetries and atmospheric stability surrounding the tropical cyclone (TC) during the landfall period of a nearly-stationary TC. Previous research with idealized hurricane simulations suggests that atmospheric stability may vary surrounding a TC during landfall, with the atmosphere destabilizing offshore and stabilizing onshore. However, this finding has not been studied using a realistic approach. Due to Hurricane Florence's slow motion, the storm was situated at the land-ocean boundary for multiple days, providing an ideal opportunity to examine the role of atmospheric stability in modifying hurricane precipitation during landfall. This study uses the Advanced Research Weather Research and Forecasting (WRF-ARW) version 3.6.1 to produce high-resolution simulations to examine the variations in precipitation and atmospheric stability surrounding Hurricane Florence. Precipitation accumulation at different temporal scales was used to determine that asymmetries existed during the landfall period. Observed and model-simulated Convective Available Potential Energy (CAPE) were used to measure stability surrounding the TC. Simulated CAPE indicates that there was a significant difference between stability right- and left-of-track. In addition to a control simulation, two experimental simulations were conducted by modifying the land surface to vary the heat and moisture exchange coefficient (HS) and hold the surface roughness (Z0) constant. By isolating the HS to be more moist or dry, the altered low-level moisture was hypothesized to cause the precipitation and convection distributions to become more symmetrical or asymmetrical, respectively. The results from the experimental simulations showed that the altered land surface affects the relative humidity from the surface to 950 mb, which has an immediate impact on stability off-shore left-of-track. Overall, the precipitation and stability asymmetries were not significantly impacted by the altered near-surface moisture, indicating other physical factors contribute to the asymmetries. The results of this study provide insight into the role of atmospheric instability in generating asymmetrical precipitation distributions in landfalling TCs, which may be particularly important in slow-moving TCs like Hurricane Florence.



tropical cyclone, hurricane, precipitation, convection, atmospheric stability