VTechWorks staff will be away for the Thanksgiving holiday beginning at noon on Wednesday, November 27, through Friday, November 29. We will resume normal operations on Monday, December 2. Thank you for your patience.
 

Bioaugmentation and Retention of Anammox Granules to a Mainstream Deammonification Bio-Oxidation Pilot with a Post Polishing Anoxic Partial Denitrification/Anammox Moving Bed Biofilm Reactor

dc.contributor.authorCampolong, Cody Jamesen
dc.contributor.committeechairNovak, John T.en
dc.contributor.committeechairBott, Charles B.en
dc.contributor.committeememberHe, Zhenen
dc.contributor.departmentEnvironmental Science and Engineeringen
dc.date.accessioned2020-09-16T06:00:21Zen
dc.date.available2020-09-16T06:00:21Zen
dc.date.issued2019-03-25en
dc.description.abstractThe Chesapeake Bay watershed has seen an increase in population, nutrient loading, and stringent effluent limits; therefore, cost-effective technologies must be explored and implemented to intensify the treatment of regional wastewater. This work describes the bioaugmentation and retention of anammox (AMX) granules in a continuous adsorption/bio-oxidation (A/B) mainstream deammonification pilot-scale process treating domestic wastewater. The AMX granules were collected from the underflow of a sidestream DEMON® process. The bioaugmentation rate was based on several factors including full-scale sidestream DEMON® wasting rate and sidestream vs mainstream AMX activity. The retention of bioaugmented AMX granules required a novel settling column at the end of the deammonification step. The settling column was designed to provide a surface overflow rate (SOR) that allowed dense AMX granules to settle into the underflow and less dense floccular biomass to outselect into the overflow. B-Stage was operated to out-select nitrite oxidizing bacteria (NOB) by maintaining an ammonia residual (>2 mg NH4-N/L), a relatively high dissolved oxygen (DO) (>1.5 mg O2/L) concentration, an aggressive solids retention time (SRT) for NOB washout, and intermittent aeration for transient anoxia. AMX activity was not detected in the mainstream at any time. The settling column AMX retention quantification suggested but did not confirm AMX were maintained in the mainstream. NOB were not suppressed during this study and no nitrite accumulation was present in the mainstream process. It was theorized that AMX granules were successfully settled into the settling column underflow and accumulated in the intermittently mixed sidestream biological phosphorus reactor (SBPR) where they disintegrated. This work also describes optimization of carbon addition to an anoxic partial denitrification anammox (PdN/A) moving bed biofilm reactor (MBBR) testing glycerol, acetate, and methanol as carbon sources to maximize total inorganic nitrogen (TIN) removal through the anammox pathway and to minimize effluent TIN. A carbon feeding strategy was developed and was evaluated by the extent of partial denitrification vs full denitrification (partial denitrification efficiency, PdN efficiency). All three carbon sources were capable of high TIN removal, low effluent TIN, and moderate to high PdN efficiency. Average TIN removal for glycerol was 10.0 ± 3.6 mg TIN/L, for acetate it was 8.7 ± 2.9 mg TIN/L, and for methanol it was 11.5 ± 5.6 mg TIN/L. Average effluent TIN for glycerol was 6.0 ± 4.0 mg TIN/L, for acetate it was 5.0 ± 1.1 mg TIN/L, and for methanol it was 4.3 ± 1.5 mg TIN/L. Average PdN efficiency for glycerol was 91.0 ± 9.0%, for acetate it was 88.0 ± 7.7%, and for methanol it was 74.0 ± 8.5%. When PdN efficiency was factored into the cost of each carbon source, methanol was 5.83% cheaper than glycerol per mass TIN removed and 59.0% cheaper than acetate per mass TIN-N removed.en
dc.description.abstractgeneralThe Chesapeake Bay watershed has seen an increase in population, nutrient loading, and stringent effluent limits; therefore, cost-effective technologies must be explored and implemented to intensify the treatment of regional wastewater. This work involves removing nitrogen from wastewater in a pilot sized modeled from a real wastewater treatment plant. The removal of nitrogen from wastewater can become costly. This cost is due to aeration and chemical demands to remove the nitrogen. This masters work uses a type of microorganism that can remove nitrogen without the need for aeration or chemicals through anaerobic ammonia oxidation (AMX bacteria). A specific environment has been created for AMX bacteria during this study to ensure they perform nitrogen removal optimally. Often times, communities of bacteria can help remove nitrogen more effectively when they work together. Therefore, communities of bacteria were encouraged to grow during this study. We were able to see that nitrogen removal was indeed occurring at high rates and producing high effluent water quality. We used several different metrics to prove this nitrogen removal technology worked well. This research was important because it showed the capabilities of a highly intensified process of successful nitrogen removal at a pilot-scale facility. It is the hope that these findings can be improved upon and implemented at full-scale facilities. These full-scale facilities would be able to achieve low levels of nitrogen in their effluent while saving millions of dollars on operational costs.en
dc.description.degreeMaster of Scienceen
dc.format.mediumETDen
dc.identifier.othervt_gsexam:19109en
dc.identifier.urihttp://hdl.handle.net/10919/99964en
dc.publisherVirginia Techen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectMainstream deammonificationen
dc.subjectBNRen
dc.subjectAnammox retentionen
dc.subjectanammoxen
dc.subjectPdN/Aen
dc.titleBioaugmentation and Retention of Anammox Granules to a Mainstream Deammonification Bio-Oxidation Pilot with a Post Polishing Anoxic Partial Denitrification/Anammox Moving Bed Biofilm Reactoren
dc.typeThesisen
thesis.degree.disciplineEnvironmental Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Campolong_CJ_T_2019.pdf
Size:
2.45 MB
Format:
Adobe Portable Document Format

Collections