Extending the Capabilities of Time Delayed Haptic Teleoperation Systems

TR Number



Journal Title

Journal ISSN

Volume Title


Virginia Tech


This thesis focuses on making improvements to time-delayed teleoperation systems, with both direct and semi-autonomous haptic control, by addressing the challenges associated with force-position (F-P) predictive architectures. As the time delay from the communication channel increases, system stability and performance degrade. Previously, solutions focused on communication channel stability and environment force estimation methods that primarily rely on linearization of the Hunt-Crossley (HC) contact model. These result in a loss of transparency in the system and limiting use cases from linearization assumptions. Moreover, semi-autonomous solutions aimed at decreasing user effort and automating subtasks, such as obstacle avoidance and user guidance, require training or singularly focus on joint space tasks.

This work addresses the shortcomings of the aforementioned methods by refocusing on system components to achieve more favorable dynamics during environment contact with the use of a series elastic actuator (SEA), investigating alternative HC parameter estimation techniques, and synthesizing an assistive semi-autonomous control framework that predicts user intention recognition and automates gross motion tasks. Experimental results with a remote SEA demonstrate improved performance with stiff environments in delays of up to two seconds round trip time. The coupling of the force and position through the actuator along with simultaneous sensing capabilities also show robustness for contact with soft environments. Further improvements with soft environment contact are achieved through HC parameter estimation, with smooth parameter update switching using a Sigmoid function. A novel application of Chebyshev polynomial approximation for adaptive parameter estimation of the HC model was also proposed. This approach provides control via backstepping with adaptive parameter estimation using Lyapunov methods. Additionally, this method reduces excitation requirements by using nonlinear swapping and the data accumulation concept to guarantee parameter convergence. A simulated teleoperation system demonstrates the effectiveness of this approach and initial results from experiment show promise for this approach in practice. Finally, a user study involving a pick and place task produced favorable results for the proposed semi-autonomous framework which significantly reduced task completion times.



Robotics, teleoperation, time-delay, semi-autonomous control, series elastic actuation (SEA), adaptive parameter estimation