VTechWorks staff will be away for the winter holidays starting Tuesday, December 24, 2024, through Wednesday, January 1, 2025, and will not be replying to requests during this time. Thank you for your patience, and happy holidays!
 

Characterization of pond effluents and biological and physicochemical assessment of receiving waters in Ghana

TR Number

Date

2010-04-09

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

This study was carried out to characterize ponds and aquaculture systems, and also to determine both the potential and actual impacts of pond aquaculture effluents on receiving stream quality in the Ashanti and Brong Ahafo regions of Ghana. Water, fish and macroinvertebrate samples were collected from upstream, downstream and nearby reference streams of, and questionnaires administered to, 32 farms. Total settleable solids were higher in ponds than reference streams (p = 0.0166); suspended solids was higher in ponds than reference streams (p = 0.0159) and upstream (p = 0.0361); and total phosphorus was higher in ponds than reference (p = 0.0274) and upstream (p = 0.0269). Total nitrogen was most clearly higher in ponds than all other locations: p = 0.0016, 0.0086 and 0.0154 for the differences between ponds and reference, upstream, and downstream respectively. BOD5 level was also higher in ponds than all locations (p = 0.0048, 0.0009, and 0.0012 respectively). Also, non-guarding fish species were more abundant in reference streams than downstream (p = 0.0214) and upstream (p = 0.0251), and sand-detritus spawning fish were less predominant in reference streams than upstream (p = 0.0222) and marginally less in downstream locations (p = 0.0539). A possible subsidy-stress response within study streams was also observed. Hence, ponds are potential sources of these water quality variables to receiving streams. Effluent-receiving streams, generally, were not much different from reference streams in terms of most the metrics of community structure and function used in the comparisons. Hence, even though receiving streams in Central Ghana may not be severely impacted by aquaculture effluents at the moment, the management of pond effluents will determine the scale of future impact. Vegetable, cereal, and livestock farming could serve as additional sources of fecal streptococci and coliform bacteria and nutrient-enrichment within the study area, besides aquaculture, and so these industries must also be included in efforts to minimize pollution of these streams.

Description

Keywords

biomonitoring, Ghana, benthic macroinvertebrates, stream ecology, Water quality, aquaculture effluents

Citation

Collections