Supervised and self-supervised deep learning approaches for weed identification and soybean yield prediction

dc.contributor.authorSrivastava, Dhirajen
dc.contributor.committeechairSingh, Vijayen
dc.contributor.committeememberLi, Songen
dc.contributor.committeememberKochersberger, Kevin Bruceen
dc.contributor.departmentPlant Pathology, Physiology and Weed Scienceen
dc.description.abstractThis research uncovers a novel pathway in precision agriculture, emphasizing the utilization of advanced supervised and self-supervised deep learning approaches for an innovative solution to weed detection and crop yield prediction. The study focuses on key weed species: Italian ryegrass in wheat, Palmer amaranth, and common ragweed in soybean, which are troublesome weeds in the United States. One of the most innovative components of this research is the debut of a self-supervised learning approach specifically tailored for soybean yield prediction using only unlabeled RGB images. This novel strategy presents a departure from traditional yield prediction methods that consider multiple variables, thus offering a more streamlined and efficient methodology that presents a significant contribution to the field. To address the monitoring of Italian ryegrass in wheat cultivation, a bespoke Convolutional Neural Network (CNN) model was developed. It demonstrated impressive precision and recall rates of 100% and 97.5% respectively, in accurately classifying Italian ryegrass in the wheat. Among three hyperparameter tuning methods, Bayesian optimization emerges as the most efficient, delivering optimal results in just 10 iterations, contrasting with 723 and 304 iterations required for grid search and random search respectively. Further, this study examines the performance of various classification and object detection algorithms on Unmanned Aerial Systems (UAS)-acquired images at different growth stages of soybean and Palmer amaranth. Both the Vision Transformer and EfficientNetB0 models display promising test accuracies of 97.69% and 93.26% respectively. However, considering a balance between speed and accuracy, YOLOv6s emerged as the most suitable object detection model for real-time deployment, achieving an 82.6% mean average precision (mAP) at an average inference speed of 8.28 milliseconds. Furthermore, a self-supervised contrastive learning approach was introduced for automating the labeling of Palmer amaranth and soybean. This method achieved a notable 98.5% test accuracy, indicating the potential for cost-efficient data acquisition and labeling to advance precision agriculture research. A separate study was conducted to detect common ragweed in soybean crops and the prediction of soybean yield impacted by varying weed densities. The Vision Transformer and MLP-Mixer models achieve test accuracies of 97.95% and 96.92% for weed detection, with YOLOv6 outperforming YOLOv5, attaining an mAP of 81.5% at an average inference speed of 7.05 milliseconds. Self-supervised learning-based yield prediction models reach a coefficient of determination of up to 0.80 and a correlation coefficient of 0.88 between predicted and actual yield. In conclusion, this research elucidates the transformative potential of self-supervised and supervised deep learning techniques in revolutionizing weed detection and crop yield prediction practices. Its findings significantly contribute to precision agriculture, paving the way for efficient and cost-effective site-specific weed management strategies. This, in turn, promotes reduced environmental impact and enhances the economic sustainability of farming operations.en
dc.description.abstractgeneralThis novel research provides a fresh approach to overcoming some of the biggest challenges in modern agriculture by leveraging the power of advanced artificial intelligence (AI) techniques. The study targets key disruptive weed species, such as, Italian ryegrass in wheat, Palmer amaranth, and common ragweed in soybean, all of which have the potential to significantly reduce crop yields. The studies were first conducted to detect Italian ryegrass in wheat crops, utilizing RGB images. A model is built using a complex AI system called a Convolutional Neural Network (CNN) to detect this weed with remarkable accuracy. The study then delves into the use of drones to take pictures of different growth stages of soybean and Palmer amaranth plants. These images were then analyzed by various AI models to assess their ability to accurately identify the plants. The results show some promising findings, with one model being quick and accurate enough to be potentially used in real-time applications. The most important part of this research is the application of self-supervised learning, which learns to label Palmer amaranth and soybean plants on its own. This novel method achieved impressive test accuracy, suggesting a future where data collection and labeling could be done more cost-effectively. In another related study, we detected common ragweed in soybean crops and predicted soybean yield based on various weed densities. AI models once again performed well for weed detection and yield prediction tasks, with self-supervised models showcasing high agreement between predicted and actual yields. In conclusion, this research showcases the exciting potential of self-teaching and supervised AI in transforming the way we detect weeds and predict crop yields. These findings could potentially lead to more efficient and cost-effective ways of managing weeds at specific sites. This could have a positive impact on the environment and improve the economic sustainability of farming operations, paving the way for a greener future.en
dc.description.degreeMaster of Science in Life Sciencesen
dc.publisherVirginia Techen
dc.rightsIn Copyrighten
dc.subjectWeed Identificationen
dc.subjectCrop Yield Predictionen
dc.subjectComputer Visionen
dc.titleSupervised and self-supervised deep learning approaches for weed identification and soybean yield predictionen
dc.typeThesisen Pathology, Physiology and Weed Scienceen Polytechnic Institute and State Universityen of Science in Life Sciencesen


Original bundle
Now showing 1 - 1 of 1
17.95 MB
Adobe Portable Document Format