A comparison of flux-splitting algorithms for the Euler equations with equilibrium air chemistry
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The use of flux-splitting techniques on the Euler equations is considered for high Mach number, high temperature flows in which the fluid is assumed to be inviscid air in equilibrium. Three different versions of real gas extensions to the Steger-Warming and Van Leer flux-vector splitting, and four different versions of real gas extensions to the Roe flux-difference splitting, are compared with regard to general applicability and ease of implementation in existing perfect gas g algorithms. Test computations are performed for the M = 5, high temperature flow over a 10-degree wedge and the M = 24.5 flow over a blunt body. Although there were minor differences between the computed results for the three types of flux-splitting algorithms considered, little variation is observed between different versions of the same algorithm.