A model generalization study in localizing indoor cows with cow localization (colo) dataset

Files

TR Number

Date

2024-07-10

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Precision livestock farming increasingly relies on advanced object localization techniques to monitor livestock health and optimize resource management. In recent years, computer vision-based localization methods have been widely used for animal localization. However, certain challenges still make the task difficult, such as the scarcity of data for model fine-tuning and the inability to generalize models effectively. To address these challenges, we introduces COLO (COw LOcalization), a publicly available dataset comprising localization data for Jersey and Holstein cows under various lighting conditions and camera angles. We evaluate the performance and generalization capabilities of YOLOv8 and YOLOv9 model variants using this dataset.

Our analysis assesses model robustness across different lighting and viewpoint configurations and explores the trade-off between model complexity, defined by the number of learnable parameters, and performance. Our findings indicate that camera viewpoint angle is the most critical factor for model training, surpassing the influence of lighting conditions. Higher model complexity does not necessarily guarantee better results; rather, performance is contingent on specific data and task requirements. For our dataset, medium complexity models generally outperformed both simpler and more complex models.

Additionally, we evaluate the performance of fine-tuned models across various pre-trained weight initialization. The results demonstrate that as the amount of training samples increases, the advantage of using weight initialization diminishes. This suggests that for large datasets, it may not be necessary to invest extra effort in fine-tuning models with custom weight initialization.

In summary, our study provides comprehensive insights for animal and dairy scientists to choose the optimal model for cow localization performance, considering factors such as lighting, camera angles, model parameters, dataset size, and different weight initialization criteria. These findings contribute to the field of precision livestock farming by enhancing the accuracy and efficiency of cow localization technology. The COLO dataset, introduced in this study, serves as a valuable resource for the research community, enabling further advancements in object detection models for precision livestock farming.

Description

Keywords

Object detection, Cows, Model generalization, Model selection

Citation

Collections