Large deformation dynamic bending of composite beams

dc.contributor.authorDerian, Edward J.en
dc.contributor.committeechairHyer, Michael W.en
dc.contributor.committeememberHerakovich, Carl T.en
dc.contributor.committeememberJohnson, Eric R.en
dc.contributor.departmentEngineering Mechanicsen
dc.date.accessioned2014-03-14T21:49:37Zen
dc.date.adate2012-11-14en
dc.date.available2014-03-14T21:49:37Zen
dc.date.issued1985-07-05en
dc.date.rdate2012-11-14en
dc.date.sdate2012-11-14en
dc.description.abstractThe large deformation response of composite beams subjected to a dynamic axial load was studied. The beams were loaded with a moderate amount of eccentricity to promote bending. The study was primarily experimental but some finite element results were obtained. Both the deformation and the failure of the beams were of interest. The static response of the beams was also studied in order to determine the difference between the static and dynamic failure. Twelve different laminate types were tested. The beams tested were 23 in. by 2 in. and generally 30 plies thick. The beams were loaded dynamically with a gravity-driven impactor traveling at 19.6 ft./sec. and quasi-static tests were done on identical beams in a displacement controlled manner. For laminates of practical interest, the failure modes under static and dynamic loadings were identical. Failure in most of the laminate types occurred in a single event involving 40% to 50% of the plies. However, failure in laminates with 30° or 15° off axis plies occurred in several events. All laminates exhibited bimodular properties. The compressive flexural moduli in some laminates was measured to be 1/2 the tensile flexural modulus. No simple relationship could be found among the measured ultimate failure strains of the different laminate types. Using empirically determined flexural properties, a finite element analysis was reasonably accurate in predicting the static and dynamic deformation response.en
dc.description.degreeMaster of Scienceen
dc.format.extentxv, 204 leavesen
dc.format.mediumBTDen
dc.format.mimetypeapplication/pdfen
dc.identifier.otheretd-11142012-040258en
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-11142012-040258/en
dc.identifier.urihttp://hdl.handle.net/10919/45678en
dc.publisherVirginia Techen
dc.relation.haspartLD5655.V855_1985.D474.pdfen
dc.relation.isformatofOCLC# 12998398en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.lccLD5655.V855 1985.D474en
dc.subject.lcshBuckling (Mechanics)en
dc.subject.lcshComposite constructionen
dc.subject.lcshGirdersen
dc.titleLarge deformation dynamic bending of composite beamsen
dc.typeThesisen
dc.type.dcmitypeTexten
thesis.degree.disciplineEngineering Mechanicsen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
LD5655.V855_1985.D474.pdf
Size:
14 MB
Format:
Adobe Portable Document Format
Description:

Collections