DPP: Dual Path PKI for Secure Aircraft Data Communication

dc.contributor.authorBuchholz, Alexander Karlen
dc.contributor.committeechairLou, Wenjingen
dc.contributor.committeememberChen, Ing-Rayen
dc.contributor.committeememberClancy, Thomas Charles IIIen
dc.contributor.departmentComputer Scienceen
dc.date.accessioned2013-05-03T08:00:13Zen
dc.date.available2013-05-03T08:00:13Zen
dc.date.issued2013-05-02en
dc.description.abstractThrough application of modern technology, aviation systems are becoming more automated and are relying less on antiquated air traffic control (ATC) voice systems. Aircraft are now able to wirelessly broadcast and receive identity and location information using transponder technology. This helps reduce controller workload and allows the aircraft to take more responsibility for maintaining safe separation. However, these systems lack source authentication methods or the ability to check the integrity of message content. This opens the door for hackers to potentially create fraudulent messages or manipulate message content. This thesis presents a solution to handling many of the potential security issues in aircraft data communication. This is accomplished through the implementation of a Dual Path PKI (DPP) design which includes a novel approach to handling certificate revocation through session certificates. DPP defines two authentication protocols, one between aircraft and another between aircraft and ATC, to achieve source authentication. Digital signature technology is utilized to achieve message content and source integrity as well as enable bootstrapping DPP into current ATC systems. DPP employs cutting-edge elliptic curve cryptography (ECC) algorithms to increase performance and reduce overhead. T is found that the DPP design successfully mitigates several of the cyber security concerns in aircraft and ATC data communications. An implementation of the design shows that anticipated ATC systems can accommodate the additional processing power and bandwidth required by DPP to successfully achieve system integrity and security.en
dc.description.degreeMaster of Scienceen
dc.format.mediumETDen
dc.identifier.othervt_gsexam:994en
dc.identifier.urihttp://hdl.handle.net/10919/20373en
dc.publisherVirginia Techen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectAir Traffic Controlen
dc.subjectADS-Ben
dc.subjectPKIen
dc.subjectECCen
dc.subjectCertificate Revocationen
dc.titleDPP: Dual Path PKI for Secure Aircraft Data Communicationen
dc.typeThesisen
thesis.degree.disciplineComputer Science and Applicationsen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Buchholz_AK_T_2013.pdf
Size:
1.06 MB
Format:
Adobe Portable Document Format

Collections