VTechWorks staff will be away for the Thanksgiving holiday beginning at noon on Wednesday, November 27, through Friday, November 29. We will resume normal operations on Monday, December 2. Thank you for your patience.
 

NanoARG: a web service for detecting and contextualizing antimicrobial resistance genes from nanopore-derived metagenomes

dc.contributor.authorArango-Argoty, Gustavoen
dc.contributor.authorDai, Dongjuanen
dc.contributor.authorPruden, Amyen
dc.contributor.authorVikesland, Peter J.en
dc.contributor.authorHeath, Lenwood S.en
dc.contributor.authorZhang, Liqingen
dc.contributor.departmentCivil and Environmental Engineeringen
dc.contributor.departmentComputer Scienceen
dc.date.accessioned2019-06-12T12:57:17Zen
dc.date.available2019-06-12T12:57:17Zen
dc.date.issued2019-06-07en
dc.date.updated2019-06-09T03:51:40Zen
dc.description.abstractBackground Direct and indirect selection pressures imposed by antibiotics and co-selective agents and horizontal gene transfer are fundamental drivers of the evolution and spread of antibiotic resistance. Therefore, effective environmental monitoring tools should ideally capture not only antibiotic resistance genes (ARGs), but also mobile genetic elements (MGEs) and indicators of co-selective forces, such as metal resistance genes (MRGs). A major challenge towards characterizing the potential human health risk of antibiotic resistance is the ability to identify ARG-carrying microorganisms, of which human pathogens are arguably of greatest risk. Historically, short reads produced by next-generation sequencing technologies have hampered confidence in assemblies for achieving these purposes. Results Here, we introduce NanoARG, an online computational resource that takes advantage of the long reads produced by nanopore sequencing technology. Specifically, long nanopore reads enable identification of ARGs in the context of relevant neighboring genes, thus providing valuable insight into mobility, co-selection, and pathogenicity. NanoARG was applied to study a variety of nanopore sequencing data to demonstrate its functionality. NanoARG was further validated through characterizing its ability to correctly identify ARGs in sequences of varying lengths and a range of sequencing error rates. Conclusions NanoARG allows users to upload sequence data online and provides various means to analyze and visualize the data, including quantitative and simultaneous profiling of ARGs, MRGs, MGEs, and putative pathogens. A user-friendly interface allows users the analysis of long DNA sequences (including assembled contigs), facilitating data processing, analysis, and visualization. NanoARG is publicly available and freely accessible at https://bench.cs.vt.edu/nanoarg .en
dc.description.versionPublished versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationMicrobiome. 2019 Jun 07;7(1):88en
dc.identifier.doihttps://doi.org/10.1186/s40168-019-0703-9en
dc.identifier.urihttp://hdl.handle.net/10919/89937en
dc.language.isoenen
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.holderThe Author(s)en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.titleNanoARG: a web service for detecting and contextualizing antimicrobial resistance genes from nanopore-derived metagenomesen
dc.title.serialMicrobiomeen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
40168_2019_Article_703.pdf
Size:
4.19 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Item-specific license agreed upon to submission
Description: