COCO-Bridge: Common Objects in Context Dataset and Benchmark for Structural Detail Detection of Bridges

TR Number



Journal Title

Journal ISSN

Volume Title


Virginia Tech


Common Objects in Context for bridge inspection (COCO-Bridge) was introduced for use by unmanned aircraft systems (UAS) to assist in GPS denied environments, flight-planning, and detail identification and contextualization, but has far-reaching applications such as augmented reality (AR) and other artificial intelligence (AI) platforms. COCO-Bridge is an annotated dataset which can be trained using a convolutional neural network (CNN) to identify specific structural details. Many annotated datasets have been developed to detect regions of interest in images for a wide variety of applications and industries. While some annotated datasets of structural defects (primarily cracks) have been developed, most efforts are individualized and focus on a small niche of the industry. This effort initiated a benchmark dataset with a focus on structural details. This research investigated the required parameters for detail identification and evaluated performance enhancements on the annotation process. The image dataset consisted of four structural details which are commonly reviewed and rated during bridge inspections: bearings, cover plate terminations, gusset plate connections, and out of plane stiffeners. This initial version of COCO-Bridge includes a total of 774 images; 10% for evaluation and 90% for training. Several models were used with the dataset to evaluate model overfitting and performance enhancements from augmentation and number of iteration steps. Methods to economize the predictive capabilities of the model without the addition of unique data were investigated to reduce the required number of training images. Results from model tests indicated the following: additional images, mirrored along the vertical-axis, provided precision and accuracy enhancements; increasing computational step iterations improved predictive precision and accuracy, and the optimal confidence threshold for operation was 25%. Annotation recommendations and improvements were also discovered and documented as a result of the research.



Convolutional neural network, bridge inspection, UAS, CNN, Artificial Intelligence, Augmented Reality, Deep learning (Machine learning), Machine learning