VTechWorks staff will be away for the winter holidays until January 5, 2026, and will respond to requests at that time.
 

Microorganisms and Functional Genes Associated with Cometabolic Degradation of 1,4-Dioxane in Biologically-Active Carbon Biofilters Applied for Potable Reuse Treatment

TR Number

Date

2024-06-26

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

1,4-dioxane is a probable human carcinogen frequently found in water and wastewater systems at concentrations above the EPA one-in-one-million cancer risk level of 0.35 ug/L. 1,4-dioxane is not well removed through conventional treatment methods due to its polarity and resistance to biodegradation, especially when present at low (μg/L) concentrations. Cometabolic degradation of 1,4-dioxane has been achieved in groundwater remediation by stimulating bacteria carrying cyclic ether-degrading soluble diiron monooxygenases (SDIMOs) through the addition of simple alkane gases, such as propane. A recent pilot-scale study demonstrated that addition of such co-substrates prior to biological active filtration (BAF) holds potential as a novel potable reuse treatment approach that can effectively remove 1,4-dioxane. Characterization of the microbial communities associated with propane-induced cometabolism of 1,4-dioxane has largely been limited to culture or polymerase chain reaction (PCR)-dependent methods, which are highly limited in throughput, generally providing information about one organism or one gene at a time. Shotgun metagenomic sequencing is a high-throughput nontargeted means of broadly profiling microbial taxa and functional genes involved in various metabolic processes. In this thesis, methods for DNA extraction from granular activated carbon applied to full-scale BAF amended with propane for the purpose of 1,4-dioxane cometabolism were optimized and metagenomic sequencing was performed. Insights were gained into the microbes and functional genes involved in 1,4-dioxane biodegradation, furthering our understanding of a potentially powerful new water reuse treatment technology that effectively polishes recalcitrant contaminants.

Description

Keywords

Metagenomics, Biofiltration, Potable Reuse

Citation

Collections