Evaluation of a Particle Sampling Probe to Measure Mass Concentration in Particle-Laden Flows

TR Number



Journal Title

Journal ISSN

Volume Title


Virginia Tech


Particle ingestion is a prevalent issue for jet engines. During operation, sand and ash particles enter the engine and can cause serious problems, including erosion and buildup of Calcia-Magnesia-Alumina-Silicate (CMAS) deposits. Analyzing the particle mass concentration of the airflow can help better understand this issue. This can best be accomplished by sampling particles with a sampling probe at various locations within an engine. The present study is a continuation of a previous study that developed and evaluated a novel sampling probe. The present study seeks to modify the probe to optimize its sampling capability, to evaluate the aerodynamics of the modified probe through Particle Imaging Velocimetry (PIV), to gain insight on its ability to sample smaller particles, to characterize the movement of larger particles as they are sampled using Particle Tracking Velocimetry (PTV), and to develop a method to physically measure particle mass concentration. To accomplish this, a free jet rig was used to create a particle-laden flow, and the probe was placed at the jet exit to sample particles. A laser and camera system were used to capture images of the probe for PIV and PTV. A particle collection apparatus was designed to collect and weigh particles captured by the probe to measure mass concentration. The PIV results indicate that the probe exhibits sub-isokinetic sampling behavior. However, the PTV results show that large particles are not affected by non-isokinetic conditions. The mass concentration measured by the probe decreases when the flow Mach number increases due to the higher flow velocity causing particles to be spaced further apart. The mass concentration measured by the probe decreases when the probe yaw angle increases due to lower projected probe inlet area.



Particle-sampling probe, Flow sampling, Sand ingestion, Jet engine sand damage, Compressor erosion, Erosion rig, Particle mass concentration